提交 b9feae1b 编写于 作者: A Andy Polyakov

crypto/sha: add Keccak1600 primitives to build SHA-3 upon.

Reviewed-by: NRichard Levitte <levitte@openssl.org>
上级 2f6e46dc
/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdint.h>
#include <string.h>
#include <assert.h>
#define ROL64(a, offset) ((offset) ? (((a) << offset) | ((a) >> (64-offset))) \
: a)
static void Theta(uint64_t A[5][5])
{
uint64_t C[5], D[5];
size_t y;
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
for (y = 0; y < 5; y++) {
A[y][0] ^= D[0];
A[y][1] ^= D[1];
A[y][2] ^= D[2];
A[y][3] ^= D[3];
A[y][4] ^= D[4];
}
}
static void Rho(uint64_t A[5][5])
{
static const unsigned char rhotates[5][5] = {
{ 0, 1, 62, 28, 27 },
{ 36, 44, 6, 55, 20 },
{ 3, 10, 43, 25, 39 },
{ 41, 45, 15, 21, 8 },
{ 18, 2, 61, 56, 14 }
};
size_t y;
for (y = 0; y < 5; y++) {
A[y][0] = ROL64(A[y][0], rhotates[y][0]);
A[y][1] = ROL64(A[y][1], rhotates[y][1]);
A[y][2] = ROL64(A[y][2], rhotates[y][2]);
A[y][3] = ROL64(A[y][3], rhotates[y][3]);
A[y][4] = ROL64(A[y][4], rhotates[y][4]);
}
}
static void Pi(uint64_t A[5][5])
{
uint64_t T[5][5];
/*
* T = A
* A[y][x] = T[x][(3*y+x)%5]
*/
memcpy(T, A, sizeof(T));
A[0][0] = T[0][0];
A[0][1] = T[1][1];
A[0][2] = T[2][2];
A[0][3] = T[3][3];
A[0][4] = T[4][4];
A[1][0] = T[0][3];
A[1][1] = T[1][4];
A[1][2] = T[2][0];
A[1][3] = T[3][1];
A[1][4] = T[4][2];
A[2][0] = T[0][1];
A[2][1] = T[1][2];
A[2][2] = T[2][3];
A[2][3] = T[3][4];
A[2][4] = T[4][0];
A[3][0] = T[0][4];
A[3][1] = T[1][0];
A[3][2] = T[2][1];
A[3][3] = T[3][2];
A[3][4] = T[4][3];
A[4][0] = T[0][2];
A[4][1] = T[1][3];
A[4][2] = T[2][4];
A[4][3] = T[3][0];
A[4][4] = T[4][1];
}
static void Chi(uint64_t A[5][5])
{
uint64_t C[5];
size_t y;
for (y = 0; y < 5; y++) {
C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
A[y][0] = C[0];
A[y][1] = C[1];
A[y][2] = C[2];
A[y][3] = C[3];
A[y][4] = C[4];
}
}
static void Iota(uint64_t A[5][5], size_t i)
{
static const uint64_t iotas[] = {
0x0000000000000001U, 0x0000000000008082U, 0x800000000000808aU,
0x8000000080008000U, 0x000000000000808bU, 0x0000000080000001U,
0x8000000080008081U, 0x8000000000008009U, 0x000000000000008aU,
0x0000000000000088U, 0x0000000080008009U, 0x000000008000000aU,
0x000000008000808bU, 0x800000000000008bU, 0x8000000000008089U,
0x8000000000008003U, 0x8000000000008002U, 0x8000000000000080U,
0x000000000000800aU, 0x800000008000000aU, 0x8000000080008081U,
0x8000000000008080U, 0x0000000080000001U, 0x8000000080008008U
};
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
A[0][0] ^= iotas[i];
}
void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i++) {
Theta(A);
Rho(A);
Pi(A);
Chi(A);
Iota(A, i);
}
}
/*
* SHA3_absorb can be called multiple times, but at each invocation
* largest multiple of |r| out of |len| bytes are processed. Then
* remaining amount of bytes are returned. This is done to spare caller
* trouble of calculating the largest multiple of |r|, effectively the
* blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, 72,
* but can also be (1600 - 448)/8 = 144. All this means that message
* padding and intermediate sub-block buffering, byte- or bitwise, is
* caller's reponsibility.
*/
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, w = r / 8;
while (len >= r) {
for (i = 0; i < w; i++) {
A_flat[i] ^= (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
(uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
(uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
(uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
inp += 8;
}
KeccakF1600(A);
len -= r;
}
return len;
}
/*
* SHA3_squeeze is called once at the end to generate |out| hash value
* of |len| bytes.
*/
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, rem, w = r / 8;
while (len >= r) {
for (i = 0; i < w; i++) {
uint64_t Ai = A_flat[i];
out[0] = (unsigned char)(Ai);
out[1] = (unsigned char)(Ai >> 8);
out[2] = (unsigned char)(Ai >> 16);
out[3] = (unsigned char)(Ai >> 24);
out[4] = (unsigned char)(Ai >> 32);
out[5] = (unsigned char)(Ai >> 40);
out[6] = (unsigned char)(Ai >> 48);
out[7] = (unsigned char)(Ai >> 56);
out += 8;
}
len -= r;
if (len)
KeccakF1600(A);
}
rem = len % 8;
len /= 8;
for (i = 0; i < len; i++) {
uint64_t Ai = A_flat[i];
out[0] = (unsigned char)(Ai);
out[1] = (unsigned char)(Ai >> 8);
out[2] = (unsigned char)(Ai >> 16);
out[3] = (unsigned char)(Ai >> 24);
out[4] = (unsigned char)(Ai >> 32);
out[5] = (unsigned char)(Ai >> 40);
out[6] = (unsigned char)(Ai >> 48);
out[7] = (unsigned char)(Ai >> 56);
out += 8;
}
if (rem) {
uint64_t Ai = A_flat[i];
for (i = 0; i < rem; i++) {
*out++ = (unsigned char)Ai;
Ai >>= 8;
}
}
}
#ifdef SELFTEST
/*
* Post-padding one-shot implementations would look as following:
*
* SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
* SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
* SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
* SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
* SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
* SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
*/
void SHA3_sponge(const unsigned char *inp, size_t len,
unsigned char *out, size_t d, size_t r)
{
uint64_t A[5][5];
memset(A, 0, sizeof(A));
SHA3_absorb(A, inp, len, r);
SHA3_squeeze(A, out, d, r);
}
# include <stdio.h>
int main()
{
unsigned char test[168] = { '\xf3', '\x3' };
unsigned char out[512];
size_t i;
/*
* This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
*/
test[167] = '\x80';
SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
for (i = 0; i < sizeof(out);) {
printf("%02X", out[i]);
printf(++i % 16 && i != sizeof(out) ? " " : "\n");
}
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册