Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
OpenHarmony
Third Party Openssl
提交
a62a23a6
T
Third Party Openssl
项目概览
OpenHarmony
/
Third Party Openssl
1 年多 前同步成功
通知
10
Star
18
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Third Party Openssl
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a62a23a6
编写于
2月 13, 2023
作者:
O
openharmony_ci
提交者:
Gitee
2月 13, 2023
浏览文件
操作
浏览文件
下载
差异文件
!79 fix CVE
Merge pull request !79 from code4lala/monthly_20221018
上级
3323f992
3f16ceff
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
846 addition
and
29 deletion
+846
-29
BUILD.gn
BUILD.gn
+1
-0
CHANGES
CHANGES
+118
-0
crypto/asn1/bio_ndef.c
crypto/asn1/bio_ndef.c
+32
-7
crypto/bn/bn_blind.c
crypto/bn/bn_blind.c
+0
-14
crypto/bn/bn_err.c
crypto/bn/bn_err.c
+2
-0
crypto/bn/bn_local.h
crypto/bn/bn_local.h
+14
-0
crypto/bn/build.info
crypto/bn/build.info
+2
-1
crypto/bn/rsa_sup_mul.c
crypto/bn/rsa_sup_mul.c
+614
-0
crypto/err/openssl.txt
crypto/err/openssl.txt
+2
-1
crypto/pem/pem_lib.c
crypto/pem/pem_lib.c
+2
-0
crypto/rsa/rsa_ossl.c
crypto/rsa/rsa_ossl.c
+13
-4
crypto/x509v3/v3_genn.c
crypto/x509v3/v3_genn.c
+1
-1
include/crypto/bn.h
include/crypto/bn.h
+5
-0
include/openssl/bnerr.h
include/openssl/bnerr.h
+1
-0
include/openssl/x509v3.h
include/openssl/x509v3.h
+1
-1
test/pemtest.c
test/pemtest.c
+30
-0
test/v3nametest.c
test/v3nametest.c
+8
-0
未找到文件。
BUILD.gn
浏览文件 @
a62a23a6
...
...
@@ -306,6 +306,7 @@ ohos_source_set("crypto_source") {
"crypto/bn/bn_srp.c",
"crypto/bn/bn_word.c",
"crypto/bn/bn_x931p.c",
"crypto/bn/rsa_sup_mul.c",
"crypto/buffer/buf_err.c",
"crypto/buffer/buffer.c",
"crypto/cmac/cm_ameth.c",
...
...
CHANGES
浏览文件 @
a62a23a6
...
...
@@ -7,6 +7,124 @@
https://github.com/openssl/openssl/commits/ and pick the appropriate
release branch.
Changes between 1.1.1s and 1.1.1t [xx XXX xxxx]
*) Fixed a type confusion vulnerability relating to X.400 address processing
inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING
but subsequently interpreted by GENERAL_NAME_cmp as an ASN1_TYPE. This
vulnerability may allow an attacker who can provide a certificate chain and
CRL (neither of which need have a valid signature) to pass arbitrary
pointers to a memcmp call, creating a possible read primitive, subject to
some constraints. Refer to the advisory for more information. Thanks to
David Benjamin for discovering this issue. (CVE-2023-0286)
This issue has been fixed by changing the public header file definition of
GENERAL_NAME so that x400Address reflects the implementation. It was not
possible for any existing application to successfully use the existing
definition; however, if any application references the x400Address field
(e.g. in dead code), note that the type of this field has changed. There is
no ABI change.
[Hugo Landau]
Changes between 1.1.1r and 1.1.1s [1 Nov 2022]
*) Fixed a regression introduced in 1.1.1r version not refreshing the
certificate data to be signed before signing the certificate.
[Gibeom Gwon]
Changes between 1.1.1q and 1.1.1r [11 Oct 2022]
*) Fixed the linux-mips64 Configure target which was missing the
SIXTY_FOUR_BIT bn_ops flag. This was causing heap corruption on that
platform.
[Adam Joseph]
*) Fixed a strict aliasing problem in bn_nist. Clang-14 optimisation was
causing incorrect results in some cases as a result.
[Paul Dale]
*) Fixed SSL_pending() and SSL_has_pending() with DTLS which were failing to
report correct results in some cases
[Matt Caswell]
*) Fixed a regression introduced in 1.1.1o for re-signing certificates with
different key sizes
[Todd Short]
*) Added the loongarch64 target
[Shi Pujin]
*) Fixed a DRBG seed propagation thread safety issue
[Bernd Edlinger]
*) Fixed a memory leak in tls13_generate_secret
[Bernd Edlinger]
*) Fixed reported performance degradation on aarch64. Restored the
implementation prior to commit 2621751 ("aes/asm/aesv8-armx.pl: avoid
32-bit lane assignment in CTR mode") for 64bit targets only, since it is
reportedly 2-17% slower and the silicon errata only affects 32bit targets.
The new algorithm is still used for 32 bit targets.
[Bernd Edlinger]
*) Added a missing header for memcmp that caused compilation failure on some
platforms
[Gregor Jasny]
Changes between 1.1.1p and 1.1.1q [5 Jul 2022]
*) AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised
implementation would not encrypt the entirety of the data under some
circumstances. This could reveal sixteen bytes of data that was
preexisting in the memory that wasn't written. In the special case of
"in place" encryption, sixteen bytes of the plaintext would be revealed.
Since OpenSSL does not support OCB based cipher suites for TLS and DTLS,
they are both unaffected.
(CVE-2022-2097)
[Alex Chernyakhovsky, David Benjamin, Alejandro Sedeño]
Changes between 1.1.1o and 1.1.1p [21 Jun 2022]
*) In addition to the c_rehash shell command injection identified in
CVE-2022-1292, further bugs where the c_rehash script does not
properly sanitise shell metacharacters to prevent command injection have been
fixed.
When the CVE-2022-1292 was fixed it was not discovered that there
are other places in the script where the file names of certificates
being hashed were possibly passed to a command executed through the shell.
This script is distributed by some operating systems in a manner where
it is automatically executed. On such operating systems, an attacker
could execute arbitrary commands with the privileges of the script.
Use of the c_rehash script is considered obsolete and should be replaced
by the OpenSSL rehash command line tool.
(CVE-2022-2068)
[Daniel Fiala, Tomáš Mráz]
*) When OpenSSL TLS client is connecting without any supported elliptic
curves and TLS-1.3 protocol is disabled the connection will no longer fail
if a ciphersuite that does not use a key exchange based on elliptic
curves can be negotiated.
[Tomáš Mráz]
Changes between 1.1.1n and 1.1.1o [3 May 2022]
*) Fixed a bug in the c_rehash script which was not properly sanitising shell
metacharacters to prevent command injection. This script is distributed
by some operating systems in a manner where it is automatically executed.
On such operating systems, an attacker could execute arbitrary commands
with the privileges of the script.
Use of the c_rehash script is considered obsolete and should be replaced
by the OpenSSL rehash command line tool.
(CVE-2022-1292)
[Tomáš Mráz]
Changes between 1.1.1m and 1.1.1n [15 Mar 2022]
*) Fixed a bug in the BN_mod_sqrt() function that can cause it to loop forever
...
...
crypto/asn1/bio_ndef.c
浏览文件 @
a62a23a6
...
...
@@ -49,12 +49,19 @@ static int ndef_suffix(BIO *b, unsigned char **pbuf, int *plen, void *parg);
static
int
ndef_suffix_free
(
BIO
*
b
,
unsigned
char
**
pbuf
,
int
*
plen
,
void
*
parg
);
/*
* On success, the returned BIO owns the input BIO as part of its BIO chain.
* On failure, NULL is returned and the input BIO is owned by the caller.
*
* Unfortunately cannot constify this due to CMS_stream() and PKCS7_stream()
*/
BIO
*
BIO_new_NDEF
(
BIO
*
out
,
ASN1_VALUE
*
val
,
const
ASN1_ITEM
*
it
)
{
NDEF_SUPPORT
*
ndef_aux
=
NULL
;
BIO
*
asn_bio
=
NULL
;
const
ASN1_AUX
*
aux
=
it
->
funcs
;
ASN1_STREAM_ARG
sarg
;
BIO
*
pop_bio
=
NULL
;
if
(
!
aux
||
!
aux
->
asn1_cb
)
{
ASN1err
(
ASN1_F_BIO_NEW_NDEF
,
ASN1_R_STREAMING_NOT_SUPPORTED
);
...
...
@@ -69,21 +76,39 @@ BIO *BIO_new_NDEF(BIO *out, ASN1_VALUE *val, const ASN1_ITEM *it)
out
=
BIO_push
(
asn_bio
,
out
);
if
(
out
==
NULL
)
goto
err
;
pop_bio
=
asn_bio
;
BIO_asn1_set_prefix
(
asn_bio
,
ndef_prefix
,
ndef_prefix_free
);
BIO_asn1_set_suffix
(
asn_bio
,
ndef_suffix
,
ndef_suffix_free
);
if
(
BIO_asn1_set_prefix
(
asn_bio
,
ndef_prefix
,
ndef_prefix_free
)
<=
0
||
BIO_asn1_set_suffix
(
asn_bio
,
ndef_suffix
,
ndef_suffix_free
)
<=
0
||
BIO_ctrl
(
asn_bio
,
BIO_C_SET_EX_ARG
,
0
,
ndef_aux
)
<=
0
)
goto
err
;
/*
* Now let
callback prepends any digest, cipher etc BIOs ASN1 structure
* needs.
* Now let
the callback prepend any digest, cipher, etc., that the BIO's
*
ASN1 structure
needs.
*/
sarg
.
out
=
out
;
sarg
.
ndef_bio
=
NULL
;
sarg
.
boundary
=
NULL
;
if
(
aux
->
asn1_cb
(
ASN1_OP_STREAM_PRE
,
&
val
,
it
,
&
sarg
)
<=
0
)
/*
* The asn1_cb(), must not have mutated asn_bio on error, leaving it in the
* middle of some partially built, but not returned BIO chain.
*/
if
(
aux
->
asn1_cb
(
ASN1_OP_STREAM_PRE
,
&
val
,
it
,
&
sarg
)
<=
0
)
{
/*
* ndef_aux is now owned by asn_bio so we must not free it in the err
* clean up block
*/
ndef_aux
=
NULL
;
goto
err
;
}
/*
* We must not fail now because the callback has prepended additional
* BIOs to the chain
*/
ndef_aux
->
val
=
val
;
ndef_aux
->
it
=
it
;
...
...
@@ -91,11 +116,11 @@ BIO *BIO_new_NDEF(BIO *out, ASN1_VALUE *val, const ASN1_ITEM *it)
ndef_aux
->
boundary
=
sarg
.
boundary
;
ndef_aux
->
out
=
out
;
BIO_ctrl
(
asn_bio
,
BIO_C_SET_EX_ARG
,
0
,
ndef_aux
);
return
sarg
.
ndef_bio
;
err:
/* BIO_pop() is NULL safe */
(
void
)
BIO_pop
(
pop_bio
);
BIO_free
(
asn_bio
);
OPENSSL_free
(
ndef_aux
);
return
NULL
;
...
...
crypto/bn/bn_blind.c
浏览文件 @
a62a23a6
...
...
@@ -13,20 +13,6 @@
#define BN_BLINDING_COUNTER 32
struct
bn_blinding_st
{
BIGNUM
*
A
;
BIGNUM
*
Ai
;
BIGNUM
*
e
;
BIGNUM
*
mod
;
/* just a reference */
CRYPTO_THREAD_ID
tid
;
int
counter
;
unsigned
long
flags
;
BN_MONT_CTX
*
m_ctx
;
int
(
*
bn_mod_exp
)
(
BIGNUM
*
r
,
const
BIGNUM
*
a
,
const
BIGNUM
*
p
,
const
BIGNUM
*
m
,
BN_CTX
*
ctx
,
BN_MONT_CTX
*
m_ctx
);
CRYPTO_RWLOCK
*
lock
;
};
BN_BLINDING
*
BN_BLINDING_new
(
const
BIGNUM
*
A
,
const
BIGNUM
*
Ai
,
BIGNUM
*
mod
)
{
BN_BLINDING
*
ret
=
NULL
;
...
...
crypto/bn/bn_err.c
浏览文件 @
a62a23a6
...
...
@@ -73,6 +73,8 @@ static const ERR_STRING_DATA BN_str_functs[] = {
{
ERR_PACK
(
ERR_LIB_BN
,
BN_F_BN_SET_WORDS
,
0
),
"bn_set_words"
},
{
ERR_PACK
(
ERR_LIB_BN
,
BN_F_BN_STACK_PUSH
,
0
),
"BN_STACK_push"
},
{
ERR_PACK
(
ERR_LIB_BN
,
BN_F_BN_USUB
,
0
),
"BN_usub"
},
{
ERR_PACK
(
ERR_LIB_BN
,
BN_F_OSSL_BN_RSA_DO_UNBLIND
,
0
),
"ossl_bn_rsa_do_unblind"
},
{
0
,
NULL
}
};
...
...
crypto/bn/bn_local.h
浏览文件 @
a62a23a6
...
...
@@ -263,6 +263,20 @@ struct bn_gencb_st {
}
cb
;
};
struct
bn_blinding_st
{
BIGNUM
*
A
;
BIGNUM
*
Ai
;
BIGNUM
*
e
;
BIGNUM
*
mod
;
/* just a reference */
CRYPTO_THREAD_ID
tid
;
int
counter
;
unsigned
long
flags
;
BN_MONT_CTX
*
m_ctx
;
int
(
*
bn_mod_exp
)
(
BIGNUM
*
r
,
const
BIGNUM
*
a
,
const
BIGNUM
*
p
,
const
BIGNUM
*
m
,
BN_CTX
*
ctx
,
BN_MONT_CTX
*
m_ctx
);
CRYPTO_RWLOCK
*
lock
;
};
/*-
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
*
...
...
crypto/bn/build.info
浏览文件 @
a62a23a6
...
...
@@ -5,7 +5,8 @@ SOURCE[../../libcrypto]=\
bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c \
{- $target{bn_asm_src} -} \
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \
bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c
bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c \
rsa_sup_mul.c
INCLUDE[bn_exp.o]=..
...
...
crypto/bn/rsa_sup_mul.c
0 → 100644
浏览文件 @
a62a23a6
#include <openssl/e_os2.h>
#include <stddef.h>
#include <sys/types.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/rsaerr.h>
#include "internal/numbers.h"
#include "internal/constant_time.h"
#include "bn_local.h"
# if BN_BYTES == 8
typedef
uint64_t
limb_t
;
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16
/* nonstandard; implemented by gcc on 64-bit platforms */
typedef
__uint128_t
limb2_t
;
# define HAVE_LIMB2_T
# endif
# define LIMB_BIT_SIZE 64
# define LIMB_BYTE_SIZE 8
# elif BN_BYTES == 4
typedef
uint32_t
limb_t
;
typedef
uint64_t
limb2_t
;
# define LIMB_BIT_SIZE 32
# define LIMB_BYTE_SIZE 4
# define HAVE_LIMB2_T
# else
# error "Not supported"
# endif
/*
* For multiplication we're using schoolbook multiplication,
* so if we have two numbers, each with 6 "digits" (words)
* the multiplication is calculated as follows:
* A B C D E F
* x I J K L M N
* --------------
* N*F
* N*E
* N*D
* N*C
* N*B
* N*A
* M*F
* M*E
* M*D
* M*C
* M*B
* M*A
* L*F
* L*E
* L*D
* L*C
* L*B
* L*A
* K*F
* K*E
* K*D
* K*C
* K*B
* K*A
* J*F
* J*E
* J*D
* J*C
* J*B
* J*A
* I*F
* I*E
* I*D
* I*C
* I*B
* + I*A
* ==========================
* N*B N*D N*F
* + N*A N*C N*E
* + M*B M*D M*F
* + M*A M*C M*E
* + L*B L*D L*F
* + L*A L*C L*E
* + K*B K*D K*F
* + K*A K*C K*E
* + J*B J*D J*F
* + J*A J*C J*E
* + I*B I*D I*F
* + I*A I*C I*E
*
* 1+1 1+3 1+5
* 1+0 1+2 1+4
* 0+1 0+3 0+5
* 0+0 0+2 0+4
*
* 0 1 2 3 4 5 6
* which requires n^2 multiplications and 2n full length additions
* as we can keep every other result of limb multiplication in two separate
* limbs
*/
#if defined HAVE_LIMB2_T
static
ossl_inline
void
_mul_limb
(
limb_t
*
hi
,
limb_t
*
lo
,
limb_t
a
,
limb_t
b
)
{
limb2_t
t
;
/*
* this is idiomatic code to tell compiler to use the native mul
* those three lines will actually compile to single instruction
*/
t
=
(
limb2_t
)
a
*
b
;
*
hi
=
t
>>
LIMB_BIT_SIZE
;
*
lo
=
(
limb_t
)
t
;
}
#elif (BN_BYTES == 8) && (defined _MSC_VER)
/* https://learn.microsoft.com/en-us/cpp/intrinsics/umul128?view=msvc-170 */
#pragma intrinsic(_umul128)
static
ossl_inline
void
_mul_limb
(
limb_t
*
hi
,
limb_t
*
lo
,
limb_t
a
,
limb_t
b
)
{
*
lo
=
_umul128
(
a
,
b
,
hi
);
}
#else
/*
* if the compiler doesn't have either a 128bit data type nor a "return
* high 64 bits of multiplication"
*/
static
ossl_inline
void
_mul_limb
(
limb_t
*
hi
,
limb_t
*
lo
,
limb_t
a
,
limb_t
b
)
{
limb_t
a_low
=
(
limb_t
)(
uint32_t
)
a
;
limb_t
a_hi
=
a
>>
32
;
limb_t
b_low
=
(
limb_t
)(
uint32_t
)
b
;
limb_t
b_hi
=
b
>>
32
;
limb_t
p0
=
a_low
*
b_low
;
limb_t
p1
=
a_low
*
b_hi
;
limb_t
p2
=
a_hi
*
b_low
;
limb_t
p3
=
a_hi
*
b_hi
;
uint32_t
cy
=
(
uint32_t
)(((
p0
>>
32
)
+
(
uint32_t
)
p1
+
(
uint32_t
)
p2
)
>>
32
);
*
lo
=
p0
+
(
p1
<<
32
)
+
(
p2
<<
32
);
*
hi
=
p3
+
(
p1
>>
32
)
+
(
p2
>>
32
)
+
cy
;
}
#endif
/* add two limbs with carry in, return carry out */
static
ossl_inline
limb_t
_add_limb
(
limb_t
*
ret
,
limb_t
a
,
limb_t
b
,
limb_t
carry
)
{
limb_t
carry1
,
carry2
,
t
;
/*
* `c = a + b; if (c < a)` is idiomatic code that makes compilers
* use add with carry on assembly level
*/
*
ret
=
a
+
carry
;
if
(
*
ret
<
a
)
carry1
=
1
;
else
carry1
=
0
;
t
=
*
ret
;
*
ret
=
t
+
b
;
if
(
*
ret
<
t
)
carry2
=
1
;
else
carry2
=
0
;
return
carry1
+
carry2
;
}
/*
* add two numbers of the same size, return overflow
*
* add a to b, place result in ret; all arrays need to be n limbs long
* return overflow from addition (0 or 1)
*/
static
ossl_inline
limb_t
add
(
limb_t
*
ret
,
limb_t
*
a
,
limb_t
*
b
,
size_t
n
)
{
limb_t
c
=
0
;
ossl_ssize_t
i
;
for
(
i
=
n
-
1
;
i
>
-
1
;
i
--
)
c
=
_add_limb
(
&
ret
[
i
],
a
[
i
],
b
[
i
],
c
);
return
c
;
}
/*
* return number of limbs necessary for temporary values
* when multiplying numbers n limbs large
*/
static
ossl_inline
size_t
mul_limb_numb
(
size_t
n
)
{
return
2
*
n
*
2
;
}
/*
* multiply two numbers of the same size
*
* multiply a by b, place result in ret; a and b need to be n limbs long
* ret needs to be 2*n limbs long, tmp needs to be mul_limb_numb(n) limbs
* long
*/
static
void
limb_mul
(
limb_t
*
ret
,
limb_t
*
a
,
limb_t
*
b
,
size_t
n
,
limb_t
*
tmp
)
{
limb_t
*
r_odd
,
*
r_even
;
size_t
i
,
j
,
k
;
r_odd
=
tmp
;
r_even
=
&
tmp
[
2
*
n
];
memset
(
ret
,
0
,
2
*
n
*
sizeof
(
limb_t
));
for
(
i
=
0
;
i
<
n
;
i
++
)
{
for
(
k
=
0
;
k
<
i
+
n
+
1
;
k
++
)
{
r_even
[
k
]
=
0
;
r_odd
[
k
]
=
0
;
}
for
(
j
=
0
;
j
<
n
;
j
++
)
{
/*
* place results from even and odd limbs in separate arrays so that
* we don't have to calculate overflow every time we get individual
* limb multiplication result
*/
if
(
j
%
2
==
0
)
_mul_limb
(
&
r_even
[
i
+
j
],
&
r_even
[
i
+
j
+
1
],
a
[
i
],
b
[
j
]);
else
_mul_limb
(
&
r_odd
[
i
+
j
],
&
r_odd
[
i
+
j
+
1
],
a
[
i
],
b
[
j
]);
}
/*
* skip the least significant limbs when adding multiples of
* more significant limbs (they're zero anyway)
*/
add
(
ret
,
ret
,
r_even
,
n
+
i
+
1
);
add
(
ret
,
ret
,
r_odd
,
n
+
i
+
1
);
}
}
/* modifies the value in place by performing a right shift by one bit */
static
ossl_inline
void
rshift1
(
limb_t
*
val
,
size_t
n
)
{
limb_t
shift_in
=
0
,
shift_out
=
0
;
size_t
i
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
shift_out
=
val
[
i
]
&
1
;
val
[
i
]
=
shift_in
<<
(
LIMB_BIT_SIZE
-
1
)
|
(
val
[
i
]
>>
1
);
shift_in
=
shift_out
;
}
}
/* extend the LSB of flag to all bits of limb */
static
ossl_inline
limb_t
mk_mask
(
limb_t
flag
)
{
flag
|=
flag
<<
1
;
flag
|=
flag
<<
2
;
flag
|=
flag
<<
4
;
flag
|=
flag
<<
8
;
flag
|=
flag
<<
16
;
#if (LIMB_BYTE_SIZE == 8)
flag
|=
flag
<<
32
;
#endif
return
flag
;
}
/*
* copy from either a or b to ret based on flag
* when flag == 0, then copies from b
* when flag == 1, then copies from a
*/
static
ossl_inline
void
cselect
(
limb_t
flag
,
limb_t
*
ret
,
limb_t
*
a
,
limb_t
*
b
,
size_t
n
)
{
/*
* would be more efficient with non volatile mask, but then gcc
* generates code with jumps
*/
volatile
limb_t
mask
;
size_t
i
;
mask
=
mk_mask
(
flag
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
#if (LIMB_BYTE_SIZE == 8)
ret
[
i
]
=
constant_time_select_64
(
mask
,
a
[
i
],
b
[
i
]);
#else
ret
[
i
]
=
constant_time_select_32
(
mask
,
a
[
i
],
b
[
i
]);
#endif
}
}
static
limb_t
_sub_limb
(
limb_t
*
ret
,
limb_t
a
,
limb_t
b
,
limb_t
borrow
)
{
limb_t
borrow1
,
borrow2
,
t
;
/*
* while it doesn't look constant-time, this is idiomatic code
* to tell compilers to use the carry bit from subtraction
*/
*
ret
=
a
-
borrow
;
if
(
*
ret
>
a
)
borrow1
=
1
;
else
borrow1
=
0
;
t
=
*
ret
;
*
ret
=
t
-
b
;
if
(
*
ret
>
t
)
borrow2
=
1
;
else
borrow2
=
0
;
return
borrow1
+
borrow2
;
}
/*
* place the result of a - b into ret, return the borrow bit.
* All arrays need to be n limbs long
*/
static
limb_t
sub
(
limb_t
*
ret
,
limb_t
*
a
,
limb_t
*
b
,
size_t
n
)
{
limb_t
borrow
=
0
;
ossl_ssize_t
i
;
for
(
i
=
n
-
1
;
i
>
-
1
;
i
--
)
borrow
=
_sub_limb
(
&
ret
[
i
],
a
[
i
],
b
[
i
],
borrow
);
return
borrow
;
}
/* return the number of limbs necessary to allocate for the mod() tmp operand */
static
ossl_inline
size_t
mod_limb_numb
(
size_t
anum
,
size_t
modnum
)
{
return
(
anum
+
modnum
)
*
3
;
}
/*
* calculate a % mod, place the result in ret
* size of a is defined by anum, size of ret and mod is modnum,
* size of tmp is returned by mod_limb_numb()
*/
static
void
mod
(
limb_t
*
ret
,
limb_t
*
a
,
size_t
anum
,
limb_t
*
mod
,
size_t
modnum
,
limb_t
*
tmp
)
{
limb_t
*
atmp
,
*
modtmp
,
*
rettmp
;
limb_t
res
;
size_t
i
;
memset
(
tmp
,
0
,
mod_limb_numb
(
anum
,
modnum
)
*
LIMB_BYTE_SIZE
);
atmp
=
tmp
;
modtmp
=
&
tmp
[
anum
+
modnum
];
rettmp
=
&
tmp
[(
anum
+
modnum
)
*
2
];
for
(
i
=
modnum
;
i
<
modnum
+
anum
;
i
++
)
atmp
[
i
]
=
a
[
i
-
modnum
];
for
(
i
=
0
;
i
<
modnum
;
i
++
)
modtmp
[
i
]
=
mod
[
i
];
for
(
i
=
0
;
i
<
anum
*
LIMB_BIT_SIZE
;
i
++
)
{
rshift1
(
modtmp
,
anum
+
modnum
);
res
=
sub
(
rettmp
,
atmp
,
modtmp
,
anum
+
modnum
);
cselect
(
res
,
atmp
,
atmp
,
rettmp
,
anum
+
modnum
);
}
memcpy
(
ret
,
&
atmp
[
anum
],
sizeof
(
limb_t
)
*
modnum
);
}
/* necessary size of tmp for a _mul_add_limb() call with provided anum */
static
ossl_inline
size_t
_mul_add_limb_numb
(
size_t
anum
)
{
return
2
*
(
anum
+
1
);
}
/* multiply a by m, add to ret, return carry */
static
limb_t
_mul_add_limb
(
limb_t
*
ret
,
limb_t
*
a
,
size_t
anum
,
limb_t
m
,
limb_t
*
tmp
)
{
limb_t
carry
=
0
;
limb_t
*
r_odd
,
*
r_even
;
size_t
i
;
memset
(
tmp
,
0
,
sizeof
(
limb_t
)
*
(
anum
+
1
)
*
2
);
r_odd
=
tmp
;
r_even
=
&
tmp
[
anum
+
1
];
for
(
i
=
0
;
i
<
anum
;
i
++
)
{
/*
* place the results from even and odd limbs in separate arrays
* so that we have to worry about carry just once
*/
if
(
i
%
2
==
0
)
_mul_limb
(
&
r_even
[
i
],
&
r_even
[
i
+
1
],
a
[
i
],
m
);
else
_mul_limb
(
&
r_odd
[
i
],
&
r_odd
[
i
+
1
],
a
[
i
],
m
);
}
/* assert: add() carry here will be equal zero */
add
(
r_even
,
r_even
,
r_odd
,
anum
+
1
);
/*
* while here it will not overflow as the max value from multiplication
* is -2 while max overflow from addition is 1, so the max value of
* carry is -1 (i.e. max int)
*/
carry
=
add
(
ret
,
ret
,
&
r_even
[
1
],
anum
)
+
r_even
[
0
];
return
carry
;
}
static
ossl_inline
size_t
mod_montgomery_limb_numb
(
size_t
modnum
)
{
return
modnum
*
2
+
_mul_add_limb_numb
(
modnum
);
}
/*
* calculate a % mod, place result in ret
* assumes that a is in Montgomery form with the R (Montgomery modulus) being
* smallest power of two big enough to fit mod and that's also a power
* of the count of number of bits in limb_t (B).
* For calculation, we also need n', such that mod * n' == -1 mod B.
* anum must be <= 2 * modnum
* ret needs to be modnum words long
* tmp needs to be mod_montgomery_limb_numb(modnum) limbs long
*/
static
void
mod_montgomery
(
limb_t
*
ret
,
limb_t
*
a
,
size_t
anum
,
limb_t
*
mod
,
size_t
modnum
,
limb_t
ni0
,
limb_t
*
tmp
)
{
limb_t
carry
,
v
;
limb_t
*
res
,
*
rp
,
*
tmp2
;
ossl_ssize_t
i
;
res
=
tmp
;
/*
* for intermediate result we need an integer twice as long as modulus
* but keep the input in the least significant limbs
*/
memset
(
res
,
0
,
sizeof
(
limb_t
)
*
(
modnum
*
2
));
memcpy
(
&
res
[
modnum
*
2
-
anum
],
a
,
sizeof
(
limb_t
)
*
anum
);
rp
=
&
res
[
modnum
];
tmp2
=
&
res
[
modnum
*
2
];
carry
=
0
;
/* add multiples of the modulus to the value until R divides it cleanly */
for
(
i
=
modnum
;
i
>
0
;
i
--
,
rp
--
)
{
v
=
_mul_add_limb
(
rp
,
mod
,
modnum
,
rp
[
modnum
-
1
]
*
ni0
,
tmp2
);
v
=
v
+
carry
+
rp
[
-
1
];
carry
|=
(
v
!=
rp
[
-
1
]);
carry
&=
(
v
<=
rp
[
-
1
]);
rp
[
-
1
]
=
v
;
}
/* perform the final reduction by mod... */
carry
-=
sub
(
ret
,
rp
,
mod
,
modnum
);
/* ...conditionally */
cselect
(
carry
,
ret
,
rp
,
ret
,
modnum
);
}
/* allocated buffer should be freed afterwards */
static
void
BN_to_limb
(
const
BIGNUM
*
bn
,
limb_t
*
buf
,
size_t
limbs
)
{
int
i
;
int
real_limbs
=
(
BN_num_bytes
(
bn
)
+
LIMB_BYTE_SIZE
-
1
)
/
LIMB_BYTE_SIZE
;
limb_t
*
ptr
=
buf
+
(
limbs
-
real_limbs
);
for
(
i
=
0
;
i
<
real_limbs
;
i
++
)
ptr
[
i
]
=
bn
->
d
[
real_limbs
-
i
-
1
];
}
#if LIMB_BYTE_SIZE == 8
static
ossl_inline
uint64_t
be64
(
uint64_t
host
)
{
const
union
{
long
one
;
char
little
;
}
is_endian
=
{
1
};
if
(
is_endian
.
little
)
{
uint64_t
big
=
0
;
big
|=
(
host
&
0xff00000000000000
)
>>
56
;
big
|=
(
host
&
0x00ff000000000000
)
>>
40
;
big
|=
(
host
&
0x0000ff0000000000
)
>>
24
;
big
|=
(
host
&
0x000000ff00000000
)
>>
8
;
big
|=
(
host
&
0x00000000ff000000
)
<<
8
;
big
|=
(
host
&
0x0000000000ff0000
)
<<
24
;
big
|=
(
host
&
0x000000000000ff00
)
<<
40
;
big
|=
(
host
&
0x00000000000000ff
)
<<
56
;
return
big
;
}
else
{
return
host
;
}
}
#else
/* Not all platforms have htobe32(). */
static
ossl_inline
uint32_t
be32
(
uint32_t
host
)
{
const
union
{
long
one
;
char
little
;
}
is_endian
=
{
1
};
if
(
is_endian
.
little
)
{
uint32_t
big
=
0
;
big
|=
(
host
&
0xff000000
)
>>
24
;
big
|=
(
host
&
0x00ff0000
)
>>
8
;
big
|=
(
host
&
0x0000ff00
)
<<
8
;
big
|=
(
host
&
0x000000ff
)
<<
24
;
return
big
;
}
else
{
return
host
;
}
}
#endif
/*
* We assume that intermediate, possible_arg2, blinding, and ctx are used
* similar to BN_BLINDING_invert_ex() arguments.
* to_mod is RSA modulus.
* buf and num is the serialization buffer and its length.
*
* Here we use classic/Montgomery multiplication and modulo. After the calculation finished
* we serialize the new structure instead of BIGNUMs taking endianness into account.
*/
int
ossl_bn_rsa_do_unblind
(
const
BIGNUM
*
intermediate
,
const
BN_BLINDING
*
blinding
,
const
BIGNUM
*
possible_arg2
,
const
BIGNUM
*
to_mod
,
BN_CTX
*
ctx
,
unsigned
char
*
buf
,
int
num
)
{
limb_t
*
l_im
=
NULL
,
*
l_mul
=
NULL
,
*
l_mod
=
NULL
;
limb_t
*
l_ret
=
NULL
,
*
l_tmp
=
NULL
,
l_buf
;
size_t
l_im_count
=
0
,
l_mul_count
=
0
,
l_size
=
0
,
l_mod_count
=
0
;
size_t
l_tmp_count
=
0
;
int
ret
=
0
;
size_t
i
;
unsigned
char
*
tmp
;
const
BIGNUM
*
arg1
=
intermediate
;
const
BIGNUM
*
arg2
=
(
possible_arg2
==
NULL
)
?
blinding
->
Ai
:
possible_arg2
;
l_im_count
=
(
BN_num_bytes
(
arg1
)
+
LIMB_BYTE_SIZE
-
1
)
/
LIMB_BYTE_SIZE
;
l_mul_count
=
(
BN_num_bytes
(
arg2
)
+
LIMB_BYTE_SIZE
-
1
)
/
LIMB_BYTE_SIZE
;
l_mod_count
=
(
BN_num_bytes
(
to_mod
)
+
LIMB_BYTE_SIZE
-
1
)
/
LIMB_BYTE_SIZE
;
l_size
=
l_im_count
>
l_mul_count
?
l_im_count
:
l_mul_count
;
l_im
=
OPENSSL_zalloc
(
l_size
*
LIMB_BYTE_SIZE
);
l_mul
=
OPENSSL_zalloc
(
l_size
*
LIMB_BYTE_SIZE
);
l_mod
=
OPENSSL_zalloc
(
l_mod_count
*
LIMB_BYTE_SIZE
);
if
((
l_im
==
NULL
)
||
(
l_mul
==
NULL
)
||
(
l_mod
==
NULL
))
goto
err
;
BN_to_limb
(
arg1
,
l_im
,
l_size
);
BN_to_limb
(
arg2
,
l_mul
,
l_size
);
BN_to_limb
(
to_mod
,
l_mod
,
l_mod_count
);
l_ret
=
OPENSSL_malloc
(
2
*
l_size
*
LIMB_BYTE_SIZE
);
if
(
blinding
->
m_ctx
!=
NULL
)
{
l_tmp_count
=
mul_limb_numb
(
l_size
)
>
mod_montgomery_limb_numb
(
l_mod_count
)
?
mul_limb_numb
(
l_size
)
:
mod_montgomery_limb_numb
(
l_mod_count
);
l_tmp
=
OPENSSL_malloc
(
l_tmp_count
*
LIMB_BYTE_SIZE
);
}
else
{
l_tmp_count
=
mul_limb_numb
(
l_size
)
>
mod_limb_numb
(
2
*
l_size
,
l_mod_count
)
?
mul_limb_numb
(
l_size
)
:
mod_limb_numb
(
2
*
l_size
,
l_mod_count
);
l_tmp
=
OPENSSL_malloc
(
l_tmp_count
*
LIMB_BYTE_SIZE
);
}
if
((
l_ret
==
NULL
)
||
(
l_tmp
==
NULL
))
goto
err
;
if
(
blinding
->
m_ctx
!=
NULL
)
{
limb_mul
(
l_ret
,
l_im
,
l_mul
,
l_size
,
l_tmp
);
mod_montgomery
(
l_ret
,
l_ret
,
2
*
l_size
,
l_mod
,
l_mod_count
,
blinding
->
m_ctx
->
n0
[
0
],
l_tmp
);
}
else
{
limb_mul
(
l_ret
,
l_im
,
l_mul
,
l_size
,
l_tmp
);
mod
(
l_ret
,
l_ret
,
2
*
l_size
,
l_mod
,
l_mod_count
,
l_tmp
);
}
/* modulus size in bytes can be equal to num but after limbs conversion it becomes bigger */
if
(
num
<
BN_num_bytes
(
to_mod
))
{
BNerr
(
BN_F_OSSL_BN_RSA_DO_UNBLIND
,
ERR_R_PASSED_INVALID_ARGUMENT
);
goto
err
;
}
memset
(
buf
,
0
,
num
);
tmp
=
buf
+
num
-
BN_num_bytes
(
to_mod
);
for
(
i
=
0
;
i
<
l_mod_count
;
i
++
)
{
#if LIMB_BYTE_SIZE == 8
l_buf
=
be64
(
l_ret
[
i
]);
#else
l_buf
=
be32
(
l_ret
[
i
]);
#endif
if
(
i
==
0
)
{
int
delta
=
LIMB_BYTE_SIZE
-
((
l_mod_count
*
LIMB_BYTE_SIZE
)
-
num
);
memcpy
(
tmp
,
((
char
*
)
&
l_buf
)
+
LIMB_BYTE_SIZE
-
delta
,
delta
);
tmp
+=
delta
;
}
else
{
memcpy
(
tmp
,
&
l_buf
,
LIMB_BYTE_SIZE
);
tmp
+=
LIMB_BYTE_SIZE
;
}
}
ret
=
num
;
err:
OPENSSL_free
(
l_im
);
OPENSSL_free
(
l_mul
);
OPENSSL_free
(
l_mod
);
OPENSSL_free
(
l_tmp
);
OPENSSL_free
(
l_ret
);
return
ret
;
}
crypto/err/openssl.txt
浏览文件 @
a62a23a6
# Copyright 1999-202
1
The OpenSSL Project Authors. All Rights Reserved.
# Copyright 1999-202
3
The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
...
...
@@ -232,6 +232,7 @@ BN_F_BN_RSHIFT:146:BN_rshift
BN_F_BN_SET_WORDS:144:bn_set_words
BN_F_BN_STACK_PUSH:148:BN_STACK_push
BN_F_BN_USUB:115:BN_usub
BN_F_OSSL_BN_RSA_DO_UNBLIND:151:ossl_bn_rsa_do_unblind
BUF_F_BUF_MEM_GROW:100:BUF_MEM_grow
BUF_F_BUF_MEM_GROW_CLEAN:105:BUF_MEM_grow_clean
BUF_F_BUF_MEM_NEW:101:BUF_MEM_new
...
...
crypto/pem/pem_lib.c
浏览文件 @
a62a23a6
...
...
@@ -957,7 +957,9 @@ int PEM_read_bio_ex(BIO *bp, char **name_out, char **header,
*
data
=
pem_malloc
(
len
,
flags
);
if
(
*
header
==
NULL
||
*
data
==
NULL
)
{
pem_free
(
*
header
,
flags
,
0
);
*
header
=
NULL
;
pem_free
(
*
data
,
flags
,
0
);
*
data
=
NULL
;
goto
end
;
}
BIO_read
(
headerB
,
*
header
,
headerlen
);
...
...
crypto/rsa/rsa_ossl.c
浏览文件 @
a62a23a6
...
...
@@ -465,11 +465,20 @@ static int rsa_ossl_private_decrypt(int flen, const unsigned char *from,
BN_free
(
d
);
}
if
(
blinding
)
if
(
!
rsa_blinding_invert
(
blinding
,
ret
,
unblind
,
ctx
))
if
(
blinding
)
{
/*
* ossl_bn_rsa_do_unblind() combines blinding inversion and
* 0-padded BN BE serialization
*/
j
=
ossl_bn_rsa_do_unblind
(
ret
,
blinding
,
unblind
,
rsa
->
n
,
ctx
,
buf
,
num
);
if
(
j
==
0
)
goto
err
;
j
=
BN_bn2binpad
(
ret
,
buf
,
num
);
}
else
{
j
=
BN_bn2binpad
(
ret
,
buf
,
num
);
if
(
j
<
0
)
goto
err
;
}
switch
(
padding
)
{
case
RSA_PKCS1_PADDING
:
...
...
crypto/x509v3/v3_genn.c
浏览文件 @
a62a23a6
...
...
@@ -98,7 +98,7 @@ int GENERAL_NAME_cmp(GENERAL_NAME *a, GENERAL_NAME *b)
return
-
1
;
switch
(
a
->
type
)
{
case
GEN_X400
:
result
=
ASN1_
TYPE
_cmp
(
a
->
d
.
x400Address
,
b
->
d
.
x400Address
);
result
=
ASN1_
STRING
_cmp
(
a
->
d
.
x400Address
,
b
->
d
.
x400Address
);
break
;
case
GEN_EDIPARTY
:
...
...
include/crypto/bn.h
浏览文件 @
a62a23a6
...
...
@@ -86,5 +86,10 @@ int bn_lshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n);
int
bn_rshift_fixed_top
(
BIGNUM
*
r
,
const
BIGNUM
*
a
,
int
n
);
int
bn_div_fixed_top
(
BIGNUM
*
dv
,
BIGNUM
*
rem
,
const
BIGNUM
*
m
,
const
BIGNUM
*
d
,
BN_CTX
*
ctx
);
int
ossl_bn_rsa_do_unblind
(
const
BIGNUM
*
intermediate
,
const
BN_BLINDING
*
blinding
,
const
BIGNUM
*
possible_arg2
,
const
BIGNUM
*
to_mod
,
BN_CTX
*
ctx
,
unsigned
char
*
buf
,
int
num
);
#endif
include/openssl/bnerr.h
浏览文件 @
a62a23a6
...
...
@@ -72,6 +72,7 @@ int ERR_load_BN_strings(void);
# define BN_F_BN_SET_WORDS 144
# define BN_F_BN_STACK_PUSH 148
# define BN_F_BN_USUB 115
# define BN_F_OSSL_BN_RSA_DO_UNBLIND 151
/*
* BN reason codes.
...
...
include/openssl/x509v3.h
浏览文件 @
a62a23a6
...
...
@@ -136,7 +136,7 @@ typedef struct GENERAL_NAME_st {
OTHERNAME
*
otherName
;
/* otherName */
ASN1_IA5STRING
*
rfc822Name
;
ASN1_IA5STRING
*
dNSName
;
ASN1_
TYPE
*
x400Address
;
ASN1_
STRING
*
x400Address
;
X509_NAME
*
directoryName
;
EDIPARTYNAME
*
ediPartyName
;
ASN1_IA5STRING
*
uniformResourceIdentifier
;
...
...
test/pemtest.c
浏览文件 @
a62a23a6
...
...
@@ -83,9 +83,39 @@ static int test_invalid(void)
return
1
;
}
static
int
test_empty_payload
(
void
)
{
BIO
*
b
;
static
char
*
emptypay
=
"-----BEGIN CERTIFICATE-----
\n
"
"-
\n
"
/* Base64 EOF character */
"-----END CERTIFICATE-----"
;
char
*
name
=
NULL
,
*
header
=
NULL
;
unsigned
char
*
data
=
NULL
;
long
len
;
int
ret
=
0
;
b
=
BIO_new_mem_buf
(
emptypay
,
strlen
(
emptypay
));
if
(
!
TEST_ptr
(
b
))
return
0
;
/* Expected to fail because the payload is empty */
if
(
!
TEST_false
(
PEM_read_bio_ex
(
b
,
&
name
,
&
header
,
&
data
,
&
len
,
0
)))
goto
err
;
ret
=
1
;
err:
OPENSSL_free
(
name
);
OPENSSL_free
(
header
);
OPENSSL_free
(
data
);
BIO_free
(
b
);
return
ret
;
}
int
setup_tests
(
void
)
{
ADD_ALL_TESTS
(
test_b64
,
OSSL_NELEM
(
b64_pem_data
));
ADD_TEST
(
test_invalid
);
ADD_TEST
(
test_empty_payload
);
return
1
;
}
test/v3nametest.c
浏览文件 @
a62a23a6
...
...
@@ -646,6 +646,14 @@ static struct gennamedata {
0xb7
,
0x09
,
0x02
,
0x02
},
15
},
{
/*
* Regression test for CVE-2023-0286.
*/
{
0xa3
,
0x00
},
2
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录