提交 8e7f966b 编写于 作者: U Ulf Möller

SHA-1 cleanups and performance enhancements.

Submitted by: Andy Polyakov <appro@fy.chalmers.se>
上级 744029c1
......@@ -5,8 +5,11 @@
Changes between 0.9.2b and 0.9.3
*) SHA-1 cleanups and performance enhancements.
[Andy Polyakov <appro@fy.chalmers.se>]
*) Sparc v8plus assembler for the bignum library.
[Andy Polyakov <appro@fy.chalmers.se>]
[Andy Polyakov <appro@fy.chalmers.se>]
*) Accept any -xxx and +xxx compiler options in Configure.
[Ulf Möller]
......
......@@ -587,6 +587,9 @@ while (<IN>)
{ printf OUT "#define RC4_INT unsigned %s\n",$type[$rc4_int]; }
elsif (/^#((define)|(undef))\s+RC4_INDEX/)
{ printf OUT "#%s RC4_INDEX\n",($rc4_idx)?"define":"undef"; }
elsif (/^#(define|undef)\s+I386_ONLY/)
{ printf OUT "#%s I386_ONLY\n", ($processor == 386)?
"define":"undef"; }
elsif (/^#define\s+MD2_INT\s/)
{ printf OUT "#define MD2_INT unsigned %s\n",$type[$md2_int]; }
elsif (/^#define\s+IDEA_INT\s/)
......
/* crypto/opensslconf.h */
/* WARNING: This file is autogenerated by Configure */
/* Generate 80386 code? */
#undef I386_ONLY
#if defined(HEADER_CRYPTLIB_H) && !defined(OPENSSLDIR)
#define OPENSSLDIR "/usr/local/ssl"
#endif
......@@ -34,7 +37,7 @@
#if defined(HEADER_BN_H) && !defined(CONFIG_HEADER_BN_H)
#define CONFIG_HEADER_BN_H
#define BN_LLONG
#undef BN_LLONG
/* Should we define BN_DIV2W here? */
......@@ -53,7 +56,7 @@
#define CONFIG_HEADER_RC4_LOCL_H
/* if this is defined data[i] is used instead of *data, this is a %20
* speedup on x86 */
#define RC4_INDEX
#undef RC4_INDEX
#endif
#if defined(HEADER_BF_LOCL_H) && !defined(CONFIG_HEADER_BF_LOCL_H)
......@@ -67,14 +70,14 @@
/* the following is tweaked from a config script, that is why it is a
* protected undef/define */
#ifndef DES_PTR
#define DES_PTR
#undef DES_PTR
#endif
/* This helps C compiler generate the correct code for multiple functional
* units. It reduces register dependancies at the expense of 2 more
* registers */
#ifndef DES_RISC1
#define DES_RISC1
#undef DES_RISC1
#endif
#ifndef DES_RISC2
......@@ -88,7 +91,7 @@ YOU SHOULD NOT HAVE BOTH DES_RISC1 AND DES_RISC2 DEFINED!!!!!
/* Unroll the inner loop, this sometimes helps, sometimes hinders.
* Very mucy CPU dependant */
#ifndef DES_UNROLL
#define DES_UNROLL
#undef DES_UNROLL
#endif
/* These default values were supplied by
......
......@@ -67,18 +67,28 @@ extern "C" {
#error SHA is disabled.
#endif
#define SHA_CBLOCK 64
#define SHA_LBLOCK 16
#define SHA_BLOCK 16
#define SHA_LAST_BLOCK 56
#define SHA_LENGTH_BLOCK 8
#define SHA_DIGEST_LENGTH 20
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* ! SHA_LONG has to be at least 32 bits wide. If it's wider, then !
* ! SHA_LONG_LOG2 has to be defined along. !
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
#ifdef WIN16
#if defined(WIN16) || defined(__LP32__)
#define SHA_LONG unsigned long
#elif defined(_CRAY) || defined(__ILP64__)
#define SHA_LONG unsigned long
#define SHA_LONG_LOG2 3
#else
#define SHA_LONG unsigned int
#endif
#endif
#define SHA_LBLOCK 16
#define SHA_CBLOCK (SHA_LBLOCK*4) /* SHA treats input data as a
* contiguous array of 32 bit
* wide big-endian values. */
#define SHA_LAST_BLOCK (SHA_CBLOCK-8)
#define SHA_DIGEST_LENGTH 20
typedef struct SHAstate_st
{
......
......@@ -81,14 +81,14 @@ char *SHA1_version="SHA1" OPENSSL_VERSION_PTEXT;
#define K_40_59 0x8f1bbcdcUL
#define K_60_79 0xca62c1d6UL
# ifdef SHA1_ASM
void sha1_block_x86(SHA_CTX *c, register SHA_LONG *p, int num);
# define sha1_block sha1_block_x86
# else
void sha1_block(SHA_CTX *c, register SHA_LONG *p, int num);
# endif
#ifdef SHA1_ASM
void sha1_block_x86(SHA_CTX *c, register SHA_LONG *p, int num);
# define sha1_block(c,p,n) sha1_block_x86((c),(p),(n)*SHA_CBLOCK)
#else
static void sha1_block(SHA_CTX *c, register SHA_LONG *p, int num);
#endif
#if defined(L_ENDIAN) && defined(SHA1_ASM)
#if !defined(B_ENDIAN) && defined(SHA1_ASM)
# define M_c2nl c2l
# define M_p_c2nl p_c2l
# define M_c2nl_p c2l_p
......@@ -147,7 +147,7 @@ void SHA1_Update(SHA_CTX *c, const register unsigned char *data,
}
len-=(SHA_CBLOCK-c->num);
sha1_block(c,p,64);
sha1_block(c,p,1);
c->num=0;
/* drop through and do the rest */
}
......@@ -184,15 +184,15 @@ void SHA1_Update(SHA_CTX *c, const register unsigned char *data,
* copies it to a local array. I should be able to do this for
* the C version as well....
*/
#if 1
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA1_ASM)
if ((((unsigned long)data)%sizeof(SHA_LONG)) == 0)
{
sw=len/SHA_CBLOCK;
if (sw)
{
sw*=SHA_CBLOCK;
sha1_block(c,(SHA_LONG *)data,sw);
sw*=SHA_CBLOCK;
data+=sw;
len-=sw;
}
......@@ -204,35 +204,61 @@ void SHA1_Update(SHA_CTX *c, const register unsigned char *data,
p=c->data;
while (len >= SHA_CBLOCK)
{
#if defined(B_ENDIAN) || defined(L_ENDIAN)
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA1_ASM)
#define SHA_NO_TAIL_CODE
/*
* Basically we get here only when data happens
* to be unaligned.
*/
if (p != (SHA_LONG *)data)
memcpy(p,data,SHA_CBLOCK);
data+=SHA_CBLOCK;
# ifdef L_ENDIAN
# ifndef SHA1_ASM /* Will not happen */
for (sw=(SHA_LBLOCK/4); sw; sw--)
sha1_block(c,p=c->data,1);
len-=SHA_CBLOCK;
#else /* little-endian */
#define BE_COPY(dst,src,i) { \
l = ((SHA_LONG *)src)[i]; \
Endian_Reverse32(l); \
dst[i] = l; \
}
if ((((unsigned long)data)%sizeof(SHA_LONG)) == 0)
{
Endian_Reverse32(p[0]);
Endian_Reverse32(p[1]);
Endian_Reverse32(p[2]);
Endian_Reverse32(p[3]);
p+=4;
for (sw=(SHA_LBLOCK/4); sw; sw--)
{
BE_COPY(p,data,0);
BE_COPY(p,data,1);
BE_COPY(p,data,2);
BE_COPY(p,data,3);
p+=4;
data += 4*sizeof(SHA_LONG);
}
sha1_block(c,p=c->data,1);
len-=SHA_CBLOCK;
continue;
}
#endif
#endif
#ifndef SHA_NO_TAIL_CODE
/*
* In addition to "sizeof(SHA_LONG)!= 4" case the
* following code covers unaligned access cases on
* little-endian machines.
* <appro@fy.chalmers.se>
*/
p=c->data;
# endif
# endif
#else
for (sw=(SHA_BLOCK/4); sw; sw--)
for (sw=(SHA_LBLOCK/4); sw; sw--)
{
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); p[0]=l;
M_c2nl(data,l); p[1]=l;
M_c2nl(data,l); p[2]=l;
M_c2nl(data,l); p[3]=l;
p+=4;
}
p=c->data;
#endif
sha1_block(c,p,64);
sha1_block(c,p,1);
len-=SHA_CBLOCK;
#endif
}
ec=(int)len;
c->num=ec;
......@@ -247,26 +273,35 @@ void SHA1_Update(SHA_CTX *c, const register unsigned char *data,
void SHA1_Transform(SHA_CTX *c, unsigned char *b)
{
SHA_LONG p[16];
#ifndef B_ENDIAN
SHA_LONG p[SHA_LBLOCK];
SHA_LONG *q;
int i;
#endif
#if defined(B_ENDIAN) || defined(L_ENDIAN)
memcpy(p,b,64);
#ifdef L_ENDIAN
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA1_ASM)
memcpy(p,b,SHA_CBLOCK);
sha1_block(c,p,1);
return;
#else
if (((unsigned long)b%sizeof(SHA_LONG)) == 0)
{
Endian_Reverse32(q[0]);
Endian_Reverse32(q[1]);
Endian_Reverse32(q[2]);
Endian_Reverse32(q[3]);
q+=4;
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
{
unsigned long l;
BE_COPY(q,b,0); /* BE_COPY was defined above */
BE_COPY(q,b,1);
BE_COPY(q,b,2);
BE_COPY(q,b,3);
q+=4;
b+=4*sizeof(SHA_LONG);
}
sha1_block(c,p,1);
return;
}
#endif
#else
#endif
#ifndef SHA_NO_TAIL_CODE /* defined above, see comment */
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
{
......@@ -276,16 +311,15 @@ void SHA1_Transform(SHA_CTX *c, unsigned char *b)
c2nl(b,l); *(q++)=l;
c2nl(b,l); *(q++)=l;
}
sha1_block(c,p,1);
#endif
sha1_block(c,p,64);
}
#ifndef SHA1_ASM
void sha1_block(SHA_CTX *c, register SHA_LONG *W, int num)
static void sha1_block(SHA_CTX *c, register SHA_LONG *W, int num)
{
register SHA_LONG A,B,C,D,E,T;
SHA_LONG X[16];
SHA_LONG X[SHA_LBLOCK];
A=c->h0;
B=c->h1;
......@@ -385,8 +419,7 @@ void sha1_block(SHA_CTX *c, register SHA_LONG *W, int num)
c->h3=(c->h3+B)&0xffffffffL;
c->h4=(c->h4+C)&0xffffffffL;
num-=64;
if (num <= 0) break;
if (--num <= 0) break;
A=c->h0;
B=c->h1;
......@@ -394,7 +427,12 @@ void sha1_block(SHA_CTX *c, register SHA_LONG *W, int num)
D=c->h3;
E=c->h4;
W+=16;
W+=SHA_LBLOCK; /* Note! This can happen only when sizeof(SHA_LONG)
* is 4. Whenever it's not the actual case this
* function is never called with num larger than 1
* and we never advance down here.
* <appro@fy.chalmers.se>
*/
}
}
#endif
......@@ -423,18 +461,20 @@ void SHA1_Final(unsigned char *md, SHA_CTX *c)
{
for (; i<SHA_LBLOCK; i++)
p[i]=0;
sha1_block(c,p,64);
sha1_block(c,p,1);
i=0;
}
for (; i<(SHA_LBLOCK-2); i++)
p[i]=0;
p[SHA_LBLOCK-2]=c->Nh;
p[SHA_LBLOCK-1]=c->Nl;
#if defined(L_ENDIAN) && defined(SHA1_ASM)
#if SHA_LONG_LOG2==2
#if !defined(B_ENDIAN) && defined(SHA1_ASM)
Endian_Reverse32(p[SHA_LBLOCK-2]);
Endian_Reverse32(p[SHA_LBLOCK-1]);
#endif
sha1_block(c,p,64);
#endif
sha1_block(c,p,1);
cp=md;
l=c->h0; nl2c(l,cp);
l=c->h1; nl2c(l,cp);
......@@ -442,10 +482,11 @@ void SHA1_Final(unsigned char *md, SHA_CTX *c)
l=c->h3; nl2c(l,cp);
l=c->h4; nl2c(l,cp);
/* clear stuff, sha1_block may be leaving some stuff on the stack
* but I'm not worried :-) */
c->num=0;
/* memset((char *)&c,0,sizeof(c));*/
/* sha_block may be leaving some stuff on the stack
* but I'm not worried :-)
memset((void *)c,0,sizeof(SHA_CTX));
*/
}
#endif
......@@ -81,12 +81,21 @@ char *SHA_version="SHA" OPENSSL_VERSION_PTEXT;
#define K_40_59 0x8f1bbcdcUL
#define K_60_79 0xca62c1d6UL
void sha_block(SHA_CTX *c, register SHA_LONG *p, int num);
#define M_c2nl c2nl
#define M_p_c2nl p_c2nl
#define M_c2nl_p c2nl_p
#define M_p_c2nl_p p_c2nl_p
#define M_nl2c nl2c
static void sha_block(SHA_CTX *c, register SHA_LONG *p, int num);
#if !defined(B_ENDIAN) && defined(SHA_ASM)
# define M_c2nl c2l
# define M_p_c2nl p_c2l
# define M_c2nl_p c2l_p
# define M_p_c2nl_p p_c2l_p
# define M_nl2c l2c
#else
# define M_c2nl c2nl
# define M_p_c2nl p_c2nl
# define M_c2nl_p c2nl_p
# define M_p_c2nl_p p_c2nl_p
# define M_nl2c nl2c
#endif
void SHA_Init(SHA_CTX *c)
{
......@@ -133,7 +142,7 @@ void SHA_Update(SHA_CTX *c, const register unsigned char *data,
}
len-=(SHA_CBLOCK-c->num);
sha_block(c,p,64);
sha_block(c,p,1);
c->num=0;
/* drop through and do the rest */
}
......@@ -170,15 +179,15 @@ void SHA_Update(SHA_CTX *c, const register unsigned char *data,
* copies it to a local array. I should be able to do this for
* the C version as well....
*/
#if 1
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA_ASM)
if ((((unsigned long)data)%sizeof(SHA_LONG)) == 0)
{
sw=len/SHA_CBLOCK;
if (sw)
{
sw*=SHA_CBLOCK;
sha_block(c,(SHA_LONG *)data,sw);
sw*=SHA_CBLOCK;
data+=sw;
len-=sw;
}
......@@ -190,35 +199,61 @@ void SHA_Update(SHA_CTX *c, const register unsigned char *data,
p=c->data;
while (len >= SHA_CBLOCK)
{
#if defined(B_ENDIAN) || defined(L_ENDIAN)
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA_ASM)
#define SHA_NO_TAIL_CODE
/*
* Basically we get here only when data happens
* to be unaligned.
*/
if (p != (SHA_LONG *)data)
memcpy(p,data,SHA_CBLOCK);
data+=SHA_CBLOCK;
# ifdef L_ENDIAN
# ifndef SHA_ASM /* Will not happen */
for (sw=(SHA_LBLOCK/4); sw; sw--)
sha_block(c,p=c->data,1);
len-=SHA_CBLOCK;
#else /* little-endian */
#define BE_COPY(dst,src,i) { \
l = ((SHA_LONG *)src)[i]; \
Endian_Reverse32(l); \
dst[i] = l; \
}
if ((((unsigned long)data)%sizeof(SHA_LONG)) == 0)
{
Endian_Reverse32(p[0]);
Endian_Reverse32(p[1]);
Endian_Reverse32(p[2]);
Endian_Reverse32(p[3]);
p+=4;
for (sw=(SHA_LBLOCK/4); sw; sw--)
{
BE_COPY(p,data,0);
BE_COPY(p,data,1);
BE_COPY(p,data,2);
BE_COPY(p,data,3);
p+=4;
data += 4*sizeof(SHA_LONG);
}
sha_block(c,p=c->data,1);
len-=SHA_CBLOCK;
continue;
}
#endif
#endif
#ifndef SHA_NO_TAIL_CODE
/*
* In addition to "sizeof(SHA_LONG)!= 4" case the
* following code covers unaligned access cases on
* little-endian machines.
* <appro@fy.chalmers.se>
*/
p=c->data;
# endif
# endif
#else
for (sw=(SHA_BLOCK/4); sw; sw--)
for (sw=(SHA_LBLOCK/4); sw; sw--)
{
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); *(p++)=l;
M_c2nl(data,l); p[0]=l;
M_c2nl(data,l); p[1]=l;
M_c2nl(data,l); p[2]=l;
M_c2nl(data,l); p[3]=l;
p+=4;
}
p=c->data;
#endif
sha_block(c,p,64);
sha_block(c,p,1);
len-=SHA_CBLOCK;
#endif
}
ec=(int)len;
c->num=ec;
......@@ -233,26 +268,35 @@ void SHA_Update(SHA_CTX *c, const register unsigned char *data,
void SHA_Transform(SHA_CTX *c, unsigned char *b)
{
SHA_LONG p[16];
#if !defined(B_ENDIAN)
SHA_LONG p[SHA_LBLOCK];
SHA_LONG *q;
int i;
#endif
#if defined(B_ENDIAN) || defined(L_ENDIAN)
memcpy(p,b,64);
#ifdef L_ENDIAN
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
#if SHA_LONG_LOG2==2
#if defined(B_ENDIAN) || defined(SHA_ASM)
memcpy(p,b,SHA_CBLOCK);
sha_block(c,p,1);
return;
#else
if (((unsigned long)b%sizeof(SHA_LONG)) == 0)
{
Endian_Reverse32(q[0]);
Endian_Reverse32(q[1]);
Endian_Reverse32(q[2]);
Endian_Reverse32(q[3]);
q+=4;
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
{
unsigned long l;
BE_COPY(q,b,0); /* BE_COPY was defined above */
BE_COPY(q,b,1);
BE_COPY(q,b,2);
BE_COPY(q,b,3);
q+=4;
b+=4*sizeof(SHA_LONG);
}
sha_block(c,p,1);
return;
}
#endif
#else
#endif
#ifndef SHA_NO_TAIL_CODE /* defined above, see comment */
q=p;
for (i=(SHA_LBLOCK/4); i; i--)
{
......@@ -262,14 +306,15 @@ void SHA_Transform(SHA_CTX *c, unsigned char *b)
c2nl(b,l); *(q++)=l;
c2nl(b,l); *(q++)=l;
}
sha_block(c,p,1);
#endif
sha_block(c,p,64);
}
void sha_block(SHA_CTX *c, register SHA_LONG *W, int num)
#ifndef SHA_ASM
static void sha_block(SHA_CTX *c, register SHA_LONG *W, int num)
{
register SHA_LONG A,B,C,D,E,T;
SHA_LONG X[16];
SHA_LONG X[SHA_LBLOCK];
A=c->h0;
B=c->h1;
......@@ -369,8 +414,7 @@ void sha_block(SHA_CTX *c, register SHA_LONG *W, int num)
c->h3=(c->h3+B)&0xffffffffL;
c->h4=(c->h4+C)&0xffffffffL;
num-=64;
if (num <= 0) break;
if (--num <= 0) break;
A=c->h0;
B=c->h1;
......@@ -378,9 +422,15 @@ void sha_block(SHA_CTX *c, register SHA_LONG *W, int num)
D=c->h3;
E=c->h4;
W+=16;
W+=SHA_LBLOCK; /* Note! This can happen only when sizeof(SHA_LONG)
* is 4. Whenever it's not the actual case this
* function is never called with num larger than 1
* and we never advance down here.
* <appro@fy.chalmers.se>
*/
}
}
#endif
void SHA_Final(unsigned char *md, SHA_CTX *c)
{
......@@ -406,14 +456,20 @@ void SHA_Final(unsigned char *md, SHA_CTX *c)
{
for (; i<SHA_LBLOCK; i++)
p[i]=0;
sha_block(c,p,64);
sha_block(c,p,1);
i=0;
}
for (; i<(SHA_LBLOCK-2); i++)
p[i]=0;
p[SHA_LBLOCK-2]=c->Nh;
p[SHA_LBLOCK-1]=c->Nl;
sha_block(c,p,64);
#if SHA_LONG_LOG2==2
#if !defined(B_ENDIAN) && defined(SHA_ASM)
Endian_Reverse32(p[SHA_LBLOCK-2]);
Endian_Reverse32(p[SHA_LBLOCK-1]);
#endif
#endif
sha_block(c,p,1);
cp=md;
l=c->h0; nl2c(l,cp);
l=c->h1; nl2c(l,cp);
......@@ -421,9 +477,10 @@ void SHA_Final(unsigned char *md, SHA_CTX *c)
l=c->h3; nl2c(l,cp);
l=c->h4; nl2c(l,cp);
/* clear stuff, sha_block may be leaving some stuff on the stack
* but I'm not worried :-) */
c->num=0;
/* memset((char *)&c,0,sizeof(c));*/
/* sha_block may be leaving some stuff on the stack
* but I'm not worried :-)
memset((void *)c,0,sizeof(SHA_CTX));
*/
}
#endif
......@@ -158,30 +158,79 @@
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>>24)&0xff))
#ifndef SHA_LONG_LOG2
#define SHA_LONG_LOG2 2 /* default to 32 bits */
#endif
#undef ROTATE
#undef Endian_Reverse32
#if defined(WIN32)
#define ROTATE(a,n) _lrotl(a,n)
#else
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
#elif defined(__GNUC__)
/* some inline assembler templates by <appro@fy.chalmers.se> */
#if defined(__i386)
#define ROTATE(a,n) ({ register unsigned int ret; \
asm ("roll %1,%0" \
: "=r"(ret) \
: "I"(n), "0"(a) \
: "cc"); \
ret; \
})
#ifndef I386_ONLY
#define Endian_Reverse32(a) \
{ register unsigned int l=(a); \
asm ("bswapl %0" \
: "=r"(l) : "0"(l)); \
(a)=l; \
}
#endif
#elif defined(__powerpc)
#define ROTATE(a,n) ({ register unsigned int ret; \
asm ("rlwinm %0,%1,%2,0,31" \
: "=r"(ret) \
: "r"(a), "I"(n)); \
ret; \
})
/* Endian_Reverse32 is not needed for PowerPC */
#endif
#endif
/* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
#if defined(WIN32)
#ifdef ROTATE
#ifndef Endian_Reverse32
/* 5 instructions with rotate instruction, else 9 */
#define Endian_Reverse32(a) \
{ \
unsigned long l=(a); \
(a)=((ROTATE(l,8)&0x00FF00FF)|(ROTATE(l,24)&0xFF00FF00)); \
unsigned long t=(a); \
(a)=((ROTATE(t,8)&0x00FF00FF)|(ROTATE((t&0x00FF00FF),24))); \
}
#endif
#else
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
#ifndef Endian_Reverse32
/* 6 instructions with rotate instruction, else 8 */
#define Endian_Reverse32(a) \
{ \
unsigned long l=(a); \
l=(((l&0xFF00FF00)>>8L)|((l&0x00FF00FF)<<8L)); \
(a)=ROTATE(l,16L); \
unsigned long t=(a); \
t=(((t>>8)&0x00FF00FF)|((t&0x00FF00FF)<<8)); \
(a)=ROTATE(t,16); \
}
#endif
/*
* Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
* It's rewritten as above for two reasons:
* - RISCs aren't good at long constants and have to explicitely
* compose 'em with several (well, usually 2) instructions in a
* register before performing the actual operation and (as you
* already realized:-) having same constant should inspire the
* compiler to permanently allocate the only register for it;
* - most modern CPUs have two ALUs, but usually only one has
* circuitry for shifts:-( this minor tweak inspires compiler
* to schedule shift instructions in a better way...
*
* <appro@fy.chalmers.se>
*/
#endif
/* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be
* simplified to the code in F_00_19. Wei attributes these optimisations
......@@ -195,13 +244,12 @@
#define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
#define F_60_79(b,c,d) F_20_39(b,c,d)
#ifdef SHA_0
#undef Xupdate
#ifdef SHA_0
#define Xupdate(a,i,ia,ib,ic,id) X[(i)&0x0f]=(a)=\
(ia[(i)&0x0f]^ib[((i)+2)&0x0f]^ic[((i)+8)&0x0f]^id[((i)+13)&0x0f]);
#endif
#ifdef SHA_1
#undef Xupdate
#define Xupdate(a,i,ia,ib,ic,id) (a)=\
(ia[(i)&0x0f]^ib[((i)+2)&0x0f]^ic[((i)+8)&0x0f]^id[((i)+13)&0x0f]);\
X[(i)&0x0f]=(a)=ROTATE((a),1);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册