Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
OpenHarmony
Third Party Openssl
提交
37cdcb4d
T
Third Party Openssl
项目概览
OpenHarmony
/
Third Party Openssl
1 年多 前同步成功
通知
10
Star
18
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Third Party Openssl
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37cdcb4d
编写于
3月 19, 2001
作者:
B
Bodo Möller
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Table for window sizes.
上级
57b6534e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
77 addition
and
6 deletion
+77
-6
crypto/ec/ec_mult.c
crypto/ec/ec_mult.c
+77
-6
未找到文件。
crypto/ec/ec_mult.c
浏览文件 @
37cdcb4d
...
...
@@ -63,13 +63,84 @@
/* TODO: optional Lim-Lee precomputation for the generator */
/* this is just BN_window_bits_for_exponent_size from bn_lcl.h for now;
* the table should be updated for EC */
/* TODO */
#define EC_window_bits_for_scalar_size(b) \
((b) > 671 ? 6 : \
(b) > 239 ? 5 : \
(b) > 79 ? 4 : \
(b) > 23 ? 3 : 1)
((b) >= 1500 ? 6 : \
(b) >= 550 ? 5 : \
(b) >= 200 ? 4 : \
(b) >= 55 ? 3 : \
(b) >= 20 ? 2 : \
1)
/* For window size 'w' (w >= 2), we compute the odd multiples
* 1*P .. (2^w-1)*P.
* This accounts for 2^(w-1) point additions (neglecting constants),
* each of which requires 16 field multiplications (4 squarings
* and 12 general multiplications) in the case of curves defined
* over GF(p), which are the only curves we have so far.
*
* Converting these precomputed points into affine form takes
* three field multiplications for inverting Z and one squaring
* and three multiplications for adjusting X and Y, i.e.
* 7 multiplications in total (1 squaring and 6 general multiplications),
* again except for constants.
*
* The average number of windows for a 'b' bit scalar is roughly
* b/(w+1).
* Each of these windows (except possibly for the first one, but
* we are ignoring constants anyway) requires one point addition.
* As the precomputed table stores points in affine form, these
* additions take only 11 field multiplications each (3 squarings
* and 8 general multiplications).
*
* So the total workload, except for constants, is
*
* 2^(w-1)*[5 squarings + 18 multiplications]
* + (b/(w+1))*[3 squarings + 8 multiplications]
*
* If we assume that 10 squarings are as costly as 9 multiplications,
* our task is to find the 'w' that, given 'b', minimizes
*
* 2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
* = 2^(w-1)*225 + (b/(w+1))*107.
*
* Thus optimal window sizes should be roughly as follows:
*
* w >= 6 if b >= 1414
* w = 5 if 1413 >= b >= 505
* w = 4 if 504 >= b >= 169
* w = 3 if 168 >= b >= 51
* w = 2 if 50 >= b >= 13
* w = 1 if 12 >= b
*
* If we assume instead that squarings are exactly as costly as
* multiplications, we have to minimize
* 2^(w-1)*23 + (b/(w+1))*11.
*
* This gives us the following (nearly unchanged) table of optimal
* windows sizes:
*
* w >= 6 if b >= 1406
* w = 5 if 1405 >= b >= 502
* w = 4 if 501 >= b >= 168
* w = 3 if 167 >= b >= 51
* w = 2 if 50 >= b >= 13
* w = 1 if 12 >= b
*
* Note that neither table tries to take into account memory usage
* (code locality etc.). Actual timings with NIST curve P-192 and
* 192-bit scalars show that w = 3 (instead of 4) is preferrable;
* and timings with NIST curve P-521 and 521-bit scalars show that
* w = 4 (instead of 5) is preferrable. So we round up all the
* boundaries and use the following table:
*
* w >= 6 if b >= 1500
* w = 5 if 1499 >= b >= 550
* w = 4 if 549 >= b >= 200
* w = 3 if 199 >= b >= 55
* w = 2 if 54 >= b >= 20
* w = 1 if 19 >= b
*/
/* Compute
* \sum scalars[i]*points[i]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录