提交 10bc3409 编写于 作者: A Andy Polyakov

ec/ecp_nistz256.c: switch to faster addition chain in scalar inversion.

[and improve formatting]
Reviewed-by: NRich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5001)
上级 ab4f2026
......@@ -1515,19 +1515,14 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
BIGNUM *x, BN_CTX *ctx)
{
/* RR = 2^512 mod ord(p256) */
static const BN_ULONG RR[P256_LIMBS] = { TOBN(0x83244c95,0xbe79eea2),
TOBN(0x4699799c,0x49bd6fa6),
TOBN(0x2845b239,0x2b6bec59),
TOBN(0x66e12d94,0xf3d95620) };
static const BN_ULONG RR[P256_LIMBS] = {
TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
};
/* The constant 1 (unlike ONE that is one in Montgomery representation) */
static const BN_ULONG one[P256_LIMBS] = { TOBN(0,1),TOBN(0,0),
TOBN(0,0),TOBN(0,0) };
/* expLo - the low 128bit of the exponent we use (ord(p256) - 2),
* split into 4bit windows */
static const unsigned char expLo[32] = { 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,
0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,
0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf };
static const BN_ULONG one[P256_LIMBS] = {
TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
};
/*
* We don't use entry 0 in the table, so we omit it and address
* with -1 offset.
......@@ -1561,6 +1556,10 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
}
ecp_nistz256_ord_mul_mont(table[0], t, RR);
#if 0
/*
* Original sparse-then-fixed-window algorithm, retained for reference.
*/
for (i = 2; i < 16; i += 2) {
ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
......@@ -1586,13 +1585,85 @@ static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
/*
* The bottom 128 bit of the exponent are easier done with a table
* The bottom 128 bit of the exponent are processed with fixed 4-bit window
*/
for(i = 0; i < 32; i++) {
/* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
* split into nibbles */
static const unsigned char expLo[32] = {
0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
};
ecp_nistz256_ord_sqr_mont(out, out, 4);
/* The exponent is public, no need in constant-time access */
ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
}
#else
/*
* https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
*
* Even though this code path spares 12 squarings, 4.5%, and 13
* multiplications, 25%, on grand scale sign operation is not that
* much faster, not more that 2%...
*/
enum {
i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
};
/* pre-calculate powers */
ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
/* calculations */
ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
for (i = 0; i < 27; i++) {
static const struct { unsigned char p, i; } chain[27] = {
{ 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
{ 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
{ 4, i_101 }, { 3, i_101 }, { 3, i_101 },
{ 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
{ 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
{ 5, i_111 }, { 4, i_111 }, { 5, i_111 },
{ 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
{ 2, i_11 }, { 5, i_11 }, { 5, i_11 },
{ 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
};
ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
}
#endif
ecp_nistz256_ord_mul_mont(out, out, one);
/*
......@@ -1659,7 +1730,7 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
ecp_nistz256_inv_mod_ord /* can be #defined-ed NULL */
ecp_nistz256_inv_mod_ord /* can be #define-d NULL */
};
return &ret;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册