cfb128.c 6.7 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/crypto.h>
#include "modes_local.h"
#include <string.h>

#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
typedef size_t size_t_aX __attribute((__aligned__(1)));
#else
typedef size_t size_t_aX;
#endif

/*
 * The input and output encrypted as though 128bit cfb mode is being used.
 * The extra state information to record how much of the 128bit block we have
 * used is contained in *num;
 */
void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
                           size_t len, const void *key,
                           unsigned char ivec[16], int *num,
                           int enc, block128_f block)
{
    unsigned int n;
    size_t l = 0;

    n = *num;

    if (enc) {
#if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16 % sizeof(size_t) == 0) { /* always true actually */
            do {
                while (n && len) {
                    *(out++) = ivec[n] ^= *(in++);
                    --len;
                    n = (n + 1) % 16;
                }
# if defined(STRICT_ALIGNMENT)
                if (((size_t)in | (size_t)out | (size_t)ivec) %
                    sizeof(size_t) != 0)
                    break;
# endif
                while (len >= 16) {
                    (*block) (ivec, ivec, key);
                    for (; n < 16; n += sizeof(size_t)) {
                        *(size_t_aX *)(out + n) =
                            *(size_t_aX *)(ivec + n)
                                ^= *(size_t_aX *)(in + n);
                    }
                    len -= 16;
                    out += 16;
                    in += 16;
                    n = 0;
                }
                if (len) {
                    (*block) (ivec, ivec, key);
                    while (len--) {
                        out[n] = ivec[n] ^= in[n];
                        ++n;
                    }
                }
                *num = n;
                return;
            } while (0);
        }
        /* the rest would be commonly eliminated by x86* compiler */
#endif
        while (l < len) {
            if (n == 0) {
                (*block) (ivec, ivec, key);
            }
            out[l] = ivec[n] ^= in[l];
            ++l;
            n = (n + 1) % 16;
        }
        *num = n;
    } else {
#if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16 % sizeof(size_t) == 0) { /* always true actually */
            do {
                while (n && len) {
                    unsigned char c;
                    *(out++) = ivec[n] ^ (c = *(in++));
                    ivec[n] = c;
                    --len;
                    n = (n + 1) % 16;
                }
# if defined(STRICT_ALIGNMENT)
                if (((size_t)in | (size_t)out | (size_t)ivec) %
                    sizeof(size_t) != 0)
                    break;
# endif
                while (len >= 16) {
                    (*block) (ivec, ivec, key);
                    for (; n < 16; n += sizeof(size_t)) {
                        size_t t = *(size_t_aX *)(in + n);
                        *(size_t_aX *)(out + n)
                            = *(size_t_aX *)(ivec + n) ^ t;
                        *(size_t_aX *)(ivec + n) = t;
                    }
                    len -= 16;
                    out += 16;
                    in += 16;
                    n = 0;
                }
                if (len) {
                    (*block) (ivec, ivec, key);
                    while (len--) {
                        unsigned char c;
                        out[n] = ivec[n] ^ (c = in[n]);
                        ivec[n] = c;
                        ++n;
                    }
                }
                *num = n;
                return;
            } while (0);
        }
        /* the rest would be commonly eliminated by x86* compiler */
#endif
        while (l < len) {
            unsigned char c;
            if (n == 0) {
                (*block) (ivec, ivec, key);
            }
            out[l] = ivec[n] ^ (c = in[l]);
            ivec[n] = c;
            ++l;
            n = (n + 1) % 16;
        }
        *num = n;
    }
}

/*
 * This expects a single block of size nbits for both in and out. Note that
 * it corrupts any extra bits in the last byte of out
 */
static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
                               int nbits, const void *key,
                               unsigned char ivec[16], int enc,
                               block128_f block)
{
    int n, rem, num;
    unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
                                     * use) one byte off the end */

    if (nbits <= 0 || nbits > 128)
        return;

    /* fill in the first half of the new IV with the current IV */
    memcpy(ovec, ivec, 16);
    /* construct the new IV */
    (*block) (ivec, ivec, key);
    num = (nbits + 7) / 8;
    if (enc)                    /* encrypt the input */
        for (n = 0; n < num; ++n)
            out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
    else                        /* decrypt the input */
        for (n = 0; n < num; ++n)
            out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
    /* shift ovec left... */
    rem = nbits % 8;
    num = nbits / 8;
    if (rem == 0)
        memcpy(ivec, ovec + num, 16);
    else
        for (n = 0; n < 16; ++n)
            ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);

    /* it is not necessary to cleanse ovec, since the IV is not secret */
}

/* N.B. This expects the input to be packed, MS bit first */
void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
                             size_t bits, const void *key,
                             unsigned char ivec[16], int *num,
                             int enc, block128_f block)
{
    size_t n;
    unsigned char c[1], d[1];

    for (n = 0; n < bits; ++n) {
        c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
        cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
        out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
            ((d[0] & 0x80) >> (unsigned int)(n % 8));
    }
}

void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
                             size_t length, const void *key,
                             unsigned char ivec[16], int *num,
                             int enc, block128_f block)
{
    size_t n;

    for (n = 0; n < length; ++n)
        cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
}