ecp_nistz256-armv4.pl 44.9 KB
Newer Older
R
Rich Salz 已提交
1 2 3 4 5 6 7 8
#! /usr/bin/env perl
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for ARMv4.
#
# October 2014.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816. In the process of adaptation
# original .c module was made 32-bit savvy in order to make this
# implementation possible.
#
#			with/without -DECP_NISTZ256_ASM
# Cortex-A8		+53-170%
# Cortex-A9		+76-205%
# Cortex-A15		+100-316%
# Snapdragon S4		+66-187%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +200% means 3x improvement.

$flavour = shift;
37 38
if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
39 40 41 42 43 44 45 46 47 48 49

if ($flavour && $flavour ne "void") {
    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
    die "can't locate arm-xlate.pl";

    open STDOUT,"| \"$^X\" $xlate $flavour $output";
} else {
    open STDOUT,">$output";
}
50 51 52 53 54

$code.=<<___;
#include "arm_arch.h"

.text
55
#if defined(__thumb2__)
56 57 58
.syntax	unified
.thumb
#else
59
.code	32
60
#endif
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
___
########################################################################
# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
#
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
open TABLE,"<ecp_nistz256_table.c"		or
open TABLE,"<${dir}../ecp_nistz256_table.c"	or
die "failed to open ecp_nistz256_table.c:",$!;

use integer;

foreach(<TABLE>) {
	s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
}
close TABLE;

# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
# 64*16*37-1 is because $#arr returns last valid index or @arr, not
# amount of elements.
die "insane number of elements" if ($#arr != 64*16*37-1);

$code.=<<___;
.globl	ecp_nistz256_precomputed
.type	ecp_nistz256_precomputed,%object
.align	12
ecp_nistz256_precomputed:
___
########################################################################
# this conversion smashes P256_POINT_AFFINE by individual bytes with
# 64 byte interval, similar to
#	1111222233334444
#	1234123412341234
for(1..37) {
	@tbl = splice(@arr,0,64*16);
	for($i=0;$i<64;$i++) {
		undef @line;
		for($j=0;$j<64;$j++) {
			push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
		}
		$code.=".byte\t";
		$code.=join(',',map { sprintf "0x%02x",$_} @line);
		$code.="\n";
	}
}
$code.=<<___;
.size	ecp_nistz256_precomputed,.-ecp_nistz256_precomputed
.align	5
.LRR:	@ 2^512 mod P precomputed for NIST P256 polynomial
.long	0x00000003, 0x00000000, 0xffffffff, 0xfffffffb
.long	0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004
.Lone:
.long	1,0,0,0,0,0,0,0
.asciz	"ECP_NISTZ256 for ARMv4, CRYPTOGAMS by <appro\@openssl.org>"
.align	6
___

########################################################################
# common register layout, note that $t2 is link register, so that if
# internal subroutine uses $t2, then it has to offload lr...

($r_ptr,$a_ptr,$b_ptr,$ff,$a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,$t1,$t2)=
		map("r$_",(0..12,14));
($t0,$t3)=($ff,$a_ptr);

$code.=<<___;
@ void	ecp_nistz256_to_mont(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_to_mont
.type	ecp_nistz256_to_mont,%function
ecp_nistz256_to_mont:
	adr	$b_ptr,.LRR
	b	.Lecp_nistz256_mul_mont
.size	ecp_nistz256_to_mont,.-ecp_nistz256_to_mont

@ void	ecp_nistz256_from_mont(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_from_mont
.type	ecp_nistz256_from_mont,%function
ecp_nistz256_from_mont:
	adr	$b_ptr,.Lone
	b	.Lecp_nistz256_mul_mont
.size	ecp_nistz256_from_mont,.-ecp_nistz256_from_mont

@ void	ecp_nistz256_mul_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_mul_by_2
.type	ecp_nistz256_mul_by_2,%function
.align	4
ecp_nistz256_mul_by_2:
	stmdb	sp!,{r4-r12,lr}
148
	bl	__ecp_nistz256_mul_by_2
149 150 151 152 153 154 155 156
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2

157
.type	__ecp_nistz256_mul_by_2,%function
158
.align	4
159
__ecp_nistz256_mul_by_2:
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	ldr	$a0,[$a_ptr,#0]
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	adds	$a0,$a0,$a0		@ a[0:7]+=a[0:7], i.e. add with itself
	ldr	$a3,[$a_ptr,#12]
	adcs	$a1,$a1,$a1
	ldr	$a4,[$a_ptr,#16]
	adcs	$a2,$a2,$a2
	ldr	$a5,[$a_ptr,#20]
	adcs	$a3,$a3,$a3
	ldr	$a6,[$a_ptr,#24]
	adcs	$a4,$a4,$a4
	ldr	$a7,[$a_ptr,#28]
	adcs	$a5,$a5,$a5
	adcs	$a6,$a6,$a6
	mov	$ff,#0
	adcs	$a7,$a7,$a7
177
	adc	$ff,$ff,#0
178 179

	b	.Lreduce_by_sub
180
.size	__ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2
181 182 183 184 185 186 187 188

@ void	ecp_nistz256_add(BN_ULONG r0[8],const BN_ULONG r1[8],
@					const BN_ULONG r2[8]);
.globl	ecp_nistz256_add
.type	ecp_nistz256_add,%function
.align	4
ecp_nistz256_add:
	stmdb	sp!,{r4-r12,lr}
189
	bl	__ecp_nistz256_add
190 191 192 193 194 195 196 197
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_add,.-ecp_nistz256_add

198
.type	__ecp_nistz256_add,%function
199
.align	4
200
__ecp_nistz256_add:
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	str	lr,[sp,#-4]!		@ push lr

	ldr	$a0,[$a_ptr,#0]
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	ldr	$a3,[$a_ptr,#12]
	ldr	$a4,[$a_ptr,#16]
	 ldr	$t0,[$b_ptr,#0]
	ldr	$a5,[$a_ptr,#20]
	 ldr	$t1,[$b_ptr,#4]
	ldr	$a6,[$a_ptr,#24]
	 ldr	$t2,[$b_ptr,#8]
	ldr	$a7,[$a_ptr,#28]
	 ldr	$t3,[$b_ptr,#12]
	adds	$a0,$a0,$t0
	 ldr	$t0,[$b_ptr,#16]
	adcs	$a1,$a1,$t1
	 ldr	$t1,[$b_ptr,#20]
	adcs	$a2,$a2,$t2
	 ldr	$t2,[$b_ptr,#24]
	adcs	$a3,$a3,$t3
	 ldr	$t3,[$b_ptr,#28]
	adcs	$a4,$a4,$t0
	adcs	$a5,$a5,$t1
	adcs	$a6,$a6,$t2
	mov	$ff,#0
	adcs	$a7,$a7,$t3
228
	adc	$ff,$ff,#0
229 230 231 232
	ldr	lr,[sp],#4		@ pop lr

.Lreduce_by_sub:

233
	@ if a+b >= modulus, subtract modulus.
234
	@
235 236 237 238 239 240 241 242 243 244 245 246 247
	@ But since comparison implies subtraction, we subtract
	@ modulus and then add it back if subraction borrowed.

	subs	$a0,$a0,#-1
	sbcs	$a1,$a1,#-1
	sbcs	$a2,$a2,#-1
	sbcs	$a3,$a3,#0
	sbcs	$a4,$a4,#0
	sbcs	$a5,$a5,#0
	sbcs	$a6,$a6,#1
	sbcs	$a7,$a7,#-1
	sbc	$ff,$ff,#0

248 249
	@ Note that because mod has special form, i.e. consists of
	@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
250 251
	@ using value of borrow as a whole or extracting single bit.
	@ Follow $ff register...
252

253 254
	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
255
	str	$a0,[$r_ptr,#0]
256
	adcs	$a2,$a2,$ff
257
	str	$a1,[$r_ptr,#4]
258
	adcs	$a3,$a3,#0
259
	str	$a2,[$r_ptr,#8]
260
	adcs	$a4,$a4,#0
261
	str	$a3,[$r_ptr,#12]
262
	adcs	$a5,$a5,#0
263
	str	$a4,[$r_ptr,#16]
264
	adcs	$a6,$a6,$ff,lsr#31
265
	str	$a5,[$r_ptr,#20]
266
	adcs	$a7,$a7,$ff
267 268 269 270
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
271
.size	__ecp_nistz256_add,.-__ecp_nistz256_add
272 273 274 275 276 277 278

@ void	ecp_nistz256_mul_by_3(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_mul_by_3
.type	ecp_nistz256_mul_by_3,%function
.align	4
ecp_nistz256_mul_by_3:
	stmdb	sp!,{r4-r12,lr}
279
	bl	__ecp_nistz256_mul_by_3
280 281 282 283 284 285 286 287
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3

288
.type	__ecp_nistz256_mul_by_3,%function
289
.align	4
290
__ecp_nistz256_mul_by_3:
291 292 293
	str	lr,[sp,#-4]!		@ push lr

	@ As multiplication by 3 is performed as 2*n+n, below are inline
294
	@ copies of __ecp_nistz256_mul_by_2 and __ecp_nistz256_add, see
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	@ corresponding subroutines for details.

	ldr	$a0,[$a_ptr,#0]
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	adds	$a0,$a0,$a0		@ a[0:7]+=a[0:7]
	ldr	$a3,[$a_ptr,#12]
	adcs	$a1,$a1,$a1
	ldr	$a4,[$a_ptr,#16]
	adcs	$a2,$a2,$a2
	ldr	$a5,[$a_ptr,#20]
	adcs	$a3,$a3,$a3
	ldr	$a6,[$a_ptr,#24]
	adcs	$a4,$a4,$a4
	ldr	$a7,[$a_ptr,#28]
	adcs	$a5,$a5,$a5
	adcs	$a6,$a6,$a6
	mov	$ff,#0
	adcs	$a7,$a7,$a7
314 315 316 317 318
	adc	$ff,$ff,#0

	subs	$a0,$a0,#-1		@ .Lreduce_by_sub but without stores
	sbcs	$a1,$a1,#-1
	sbcs	$a2,$a2,#-1
319 320 321
	sbcs	$a3,$a3,#0
	sbcs	$a4,$a4,#0
	sbcs	$a5,$a5,#0
322 323 324 325 326 327 328 329 330 331 332
	sbcs	$a6,$a6,#1
	sbcs	$a7,$a7,#-1
	sbc	$ff,$ff,#0

	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
	adcs	$a2,$a2,$ff
	adcs	$a3,$a3,#0
	adcs	$a4,$a4,#0
	 ldr	$b_ptr,[$a_ptr,#0]
	adcs	$a5,$a5,#0
333
	 ldr	$t1,[$a_ptr,#4]
334
	adcs	$a6,$a6,$ff,lsr#31
335
	 ldr	$t2,[$a_ptr,#8]
336
	adc	$a7,$a7,$ff
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	ldr	$t0,[$a_ptr,#12]
	adds	$a0,$a0,$b_ptr		@ 2*a[0:7]+=a[0:7]
	ldr	$b_ptr,[$a_ptr,#16]
	adcs	$a1,$a1,$t1
	ldr	$t1,[$a_ptr,#20]
	adcs	$a2,$a2,$t2
	ldr	$t2,[$a_ptr,#24]
	adcs	$a3,$a3,$t0
	ldr	$t3,[$a_ptr,#28]
	adcs	$a4,$a4,$b_ptr
	adcs	$a5,$a5,$t1
	adcs	$a6,$a6,$t2
	mov	$ff,#0
	adcs	$a7,$a7,$t3
352
	adc	$ff,$ff,#0
353 354 355 356 357 358 359 360 361 362 363
	ldr	lr,[sp],#4		@ pop lr

	b	.Lreduce_by_sub
.size	ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3

@ void	ecp_nistz256_div_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_div_by_2
.type	ecp_nistz256_div_by_2,%function
.align	4
ecp_nistz256_div_by_2:
	stmdb	sp!,{r4-r12,lr}
364
	bl	__ecp_nistz256_div_by_2
365 366 367 368 369 370 371 372
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2

373
.type	__ecp_nistz256_div_by_2,%function
374
.align	4
375
__ecp_nistz256_div_by_2:
376 377 378 379 380 381 382 383
	@ ret = (a is odd ? a+mod : a) >> 1

	ldr	$a0,[$a_ptr,#0]
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	mov	$ff,$a0,lsl#31		@ place least significant bit to most
					@ significant position, now arithmetic
					@ right shift by 31 will produce -1 or
384
					@ 0, while logical right shift 1 or 0,
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
					@ this is how modulus is conditionally
					@ synthesized in this case...
	ldr	$a3,[$a_ptr,#12]
	adds	$a0,$a0,$ff,asr#31
	ldr	$a4,[$a_ptr,#16]
	adcs	$a1,$a1,$ff,asr#31
	ldr	$a5,[$a_ptr,#20]
	adcs	$a2,$a2,$ff,asr#31
	ldr	$a6,[$a_ptr,#24]
	adcs	$a3,$a3,#0
	ldr	$a7,[$a_ptr,#28]
	adcs	$a4,$a4,#0
	 mov	$a0,$a0,lsr#1		@ a[0:7]>>=1, we can start early
					@ because it doesn't affect flags
	adcs	$a5,$a5,#0
	 orr	$a0,$a0,$a1,lsl#31
	adcs	$a6,$a6,$ff,lsr#31
	mov	$b_ptr,#0
	adcs	$a7,$a7,$ff,asr#31
	 mov	$a1,$a1,lsr#1
	adc	$b_ptr,$b_ptr,#0	@ top-most carry bit from addition

	orr	$a1,$a1,$a2,lsl#31
	mov	$a2,$a2,lsr#1
	str	$a0,[$r_ptr,#0]
	orr	$a2,$a2,$a3,lsl#31
	mov	$a3,$a3,lsr#1
	str	$a1,[$r_ptr,#4]
	orr	$a3,$a3,$a4,lsl#31
	mov	$a4,$a4,lsr#1
	str	$a2,[$r_ptr,#8]
	orr	$a4,$a4,$a5,lsl#31
	mov	$a5,$a5,lsr#1
	str	$a3,[$r_ptr,#12]
	orr	$a5,$a5,$a6,lsl#31
	mov	$a6,$a6,lsr#1
	str	$a4,[$r_ptr,#16]
	orr	$a6,$a6,$a7,lsl#31
	mov	$a7,$a7,lsr#1
	str	$a5,[$r_ptr,#20]
	orr	$a7,$a7,$b_ptr,lsl#31	@ don't forget the top-most carry bit
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
430
.size	__ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
431 432

@ void	ecp_nistz256_sub(BN_ULONG r0[8],const BN_ULONG r1[8],
433
@				        const BN_ULONG r2[8]);
434 435 436 437 438
.globl	ecp_nistz256_sub
.type	ecp_nistz256_sub,%function
.align	4
ecp_nistz256_sub:
	stmdb	sp!,{r4-r12,lr}
439
	bl	__ecp_nistz256_sub
440 441 442 443 444 445 446 447
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_sub,.-ecp_nistz256_sub

448
.type	__ecp_nistz256_sub,%function
449
.align	4
450
__ecp_nistz256_sub:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	str	lr,[sp,#-4]!		@ push lr

	ldr	$a0,[$a_ptr,#0]
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	ldr	$a3,[$a_ptr,#12]
	ldr	$a4,[$a_ptr,#16]
	 ldr	$t0,[$b_ptr,#0]
	ldr	$a5,[$a_ptr,#20]
	 ldr	$t1,[$b_ptr,#4]
	ldr	$a6,[$a_ptr,#24]
	 ldr	$t2,[$b_ptr,#8]
	ldr	$a7,[$a_ptr,#28]
	 ldr	$t3,[$b_ptr,#12]
	subs	$a0,$a0,$t0
	 ldr	$t0,[$b_ptr,#16]
	sbcs	$a1,$a1,$t1
	 ldr	$t1,[$b_ptr,#20]
	sbcs	$a2,$a2,$t2
	 ldr	$t2,[$b_ptr,#24]
	sbcs	$a3,$a3,$t3
	 ldr	$t3,[$b_ptr,#28]
	sbcs	$a4,$a4,$t0
	sbcs	$a5,$a5,$t1
	sbcs	$a6,$a6,$t2
	sbcs	$a7,$a7,$t3
	sbc	$ff,$ff,$ff		@ broadcast borrow bit
	ldr	lr,[sp],#4		@ pop lr

.Lreduce_by_add:

	@ if a-b borrows, add modulus.
	@
	@ Note that because mod has special form, i.e. consists of
	@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
	@ broadcasting borrow bit to a register, $ff, and using it as
	@ a whole or extracting single bit.

	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
	str	$a0,[$r_ptr,#0]
	adcs	$a2,$a2,$ff
	str	$a1,[$r_ptr,#4]
	adcs	$a3,$a3,#0
	str	$a2,[$r_ptr,#8]
	adcs	$a4,$a4,#0
	str	$a3,[$r_ptr,#12]
	adcs	$a5,$a5,#0
	str	$a4,[$r_ptr,#16]
	adcs	$a6,$a6,$ff,lsr#31
	str	$a5,[$r_ptr,#20]
	adcs	$a7,$a7,$ff
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
507
.size	__ecp_nistz256_sub,.-__ecp_nistz256_sub
508 509 510 511 512 513 514

@ void	ecp_nistz256_neg(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_neg
.type	ecp_nistz256_neg,%function
.align	4
ecp_nistz256_neg:
	stmdb	sp!,{r4-r12,lr}
515
	bl	__ecp_nistz256_neg
516 517 518 519 520 521 522 523
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_neg,.-ecp_nistz256_neg

524
.type	__ecp_nistz256_neg,%function
525
.align	4
526
__ecp_nistz256_neg:
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	ldr	$a0,[$a_ptr,#0]
	eor	$ff,$ff,$ff
	ldr	$a1,[$a_ptr,#4]
	ldr	$a2,[$a_ptr,#8]
	subs	$a0,$ff,$a0
	ldr	$a3,[$a_ptr,#12]
	sbcs	$a1,$ff,$a1
	ldr	$a4,[$a_ptr,#16]
	sbcs	$a2,$ff,$a2
	ldr	$a5,[$a_ptr,#20]
	sbcs	$a3,$ff,$a3
	ldr	$a6,[$a_ptr,#24]
	sbcs	$a4,$ff,$a4
	ldr	$a7,[$a_ptr,#28]
	sbcs	$a5,$ff,$a5
	sbcs	$a6,$ff,$a6
	sbcs	$a7,$ff,$a7
	sbc	$ff,$ff,$ff

	b	.Lreduce_by_add
547
.size	__ecp_nistz256_neg,.-__ecp_nistz256_neg
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
___
{
my @acc=map("r$_",(3..11));
my ($t0,$t1,$bj,$t2,$t3)=map("r$_",(0,1,2,12,14));

$code.=<<___;
@ void	ecp_nistz256_sqr_mont(BN_ULONG r0[8],const BN_ULONG r1[8]);
.globl	ecp_nistz256_sqr_mont
.type	ecp_nistz256_sqr_mont,%function
.align	4
ecp_nistz256_sqr_mont:
	mov	$b_ptr,$a_ptr
	b	.Lecp_nistz256_mul_mont
.size	ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont

@ void	ecp_nistz256_mul_mont(BN_ULONG r0[8],const BN_ULONG r1[8],
@					     const BN_ULONG r2[8]);
.globl	ecp_nistz256_mul_mont
.type	ecp_nistz256_mul_mont,%function
.align	4
ecp_nistz256_mul_mont:
.Lecp_nistz256_mul_mont:
	stmdb	sp!,{r4-r12,lr}
571
	bl	__ecp_nistz256_mul_mont
572 573 574 575 576 577 578 579
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont

580
.type	__ecp_nistz256_mul_mont,%function
581
.align	4
582
__ecp_nistz256_mul_mont:
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	stmdb	sp!,{r0-r2,lr}			@ make a copy of arguments too

	ldr	$bj,[$b_ptr,#0]			@ b[0]
	ldmia	$a_ptr,{@acc[1]-@acc[8]}

	umull	@acc[0],$t3,@acc[1],$bj		@ r[0]=a[0]*b[0]
	stmdb	sp!,{$acc[1]-@acc[8]}		@ copy a[0-7] to stack, so
						@ that it can be addressed
						@ without spending register
						@ on address
	umull	@acc[1],$t0,@acc[2],$bj		@ r[1]=a[1]*b[0]
	umull	@acc[2],$t1,@acc[3],$bj
	adds	@acc[1],@acc[1],$t3		@ accumulate high part of mult
	umull	@acc[3],$t2,@acc[4],$bj
	adcs	@acc[2],@acc[2],$t0
	umull	@acc[4],$t3,@acc[5],$bj
	adcs	@acc[3],@acc[3],$t1
	umull	@acc[5],$t0,@acc[6],$bj
	adcs	@acc[4],@acc[4],$t2
	umull	@acc[6],$t1,@acc[7],$bj
	adcs	@acc[5],@acc[5],$t3
	umull	@acc[7],$t2,@acc[8],$bj
	adcs	@acc[6],@acc[6],$t0
	adcs	@acc[7],@acc[7],$t1
	eor	$t3,$t3,$t3			@ first overflow bit is zero
	adc	@acc[8],$t2,#0
___
for(my $i=1;$i<8;$i++) {
my $t4=@acc[0];

	# Reduction iteration is normally performed by accumulating
	# result of multiplication of modulus by "magic" digit [and
	# omitting least significant word, which is guaranteed to
	# be 0], but thanks to special form of modulus and "magic"
	# digit being equal to least significant word, it can be
	# performed with additions and subtractions alone. Indeed:
	#
	#        ffff.0001.0000.0000.0000.ffff.ffff.ffff
	# *                                         abcd
	# + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
	#
	# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
	# rewrite above as:
	#
	#   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
	# + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
	# -      abcd.0000.0000.0000.0000.0000.0000.abcd
	#
	# or marking redundant operations:
	#
	#   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
	# + abcd.0000.abcd.0000.0000.abcd.----.----.----
	# -      abcd.----.----.----.----.----.----.----

$code.=<<___;
	@ multiplication-less reduction $i
	adds	@acc[3],@acc[3],@acc[0]		@ r[3]+=r[0]
	 ldr	$bj,[sp,#40]			@ restore b_ptr
	adcs	@acc[4],@acc[4],#0		@ r[4]+=0
	adcs	@acc[5],@acc[5],#0		@ r[5]+=0
	adcs	@acc[6],@acc[6],@acc[0]		@ r[6]+=r[0]
	 ldr	$t1,[sp,#0]			@ load a[0]
	adcs	@acc[7],@acc[7],#0		@ r[7]+=0
	 ldr	$bj,[$bj,#4*$i]			@ load b[i]
	adcs	@acc[8],@acc[8],@acc[0]		@ r[8]+=r[0]
	 eor	$t0,$t0,$t0
	adc	$t3,$t3,#0			@ overflow bit
	subs	@acc[7],@acc[7],@acc[0]		@ r[7]-=r[0]
	 ldr	$t2,[sp,#4]			@ a[1]
	sbcs	@acc[8],@acc[8],#0		@ r[8]-=0
	 umlal	@acc[1],$t0,$t1,$bj		@ "r[0]"+=a[0]*b[i]
	 eor	$t1,$t1,$t1
	sbc	@acc[0],$t3,#0			@ overflow bit, keep in mind
						@ that netto result is
						@ addition of a value which
						@ makes underflow impossible

	ldr	$t3,[sp,#8]			@ a[2]
	umlal	@acc[2],$t1,$t2,$bj		@ "r[1]"+=a[1]*b[i]
	 str	@acc[0],[sp,#36]		@ temporarily offload overflow
	eor	$t2,$t2,$t2
	ldr	$t4,[sp,#12]			@ a[3], $t4 is alias @acc[0]
	umlal	@acc[3],$t2,$t3,$bj		@ "r[2]"+=a[2]*b[i]
	eor	$t3,$t3,$t3
	adds	@acc[2],@acc[2],$t0		@ accumulate high part of mult
	ldr	$t0,[sp,#16]			@ a[4]
	umlal	@acc[4],$t3,$t4,$bj		@ "r[3]"+=a[3]*b[i]
	eor	$t4,$t4,$t4
	adcs	@acc[3],@acc[3],$t1
	ldr	$t1,[sp,#20]			@ a[5]
	umlal	@acc[5],$t4,$t0,$bj		@ "r[4]"+=a[4]*b[i]
	eor	$t0,$t0,$t0
	adcs	@acc[4],@acc[4],$t2
	ldr	$t2,[sp,#24]			@ a[6]
	umlal	@acc[6],$t0,$t1,$bj		@ "r[5]"+=a[5]*b[i]
	eor	$t1,$t1,$t1
	adcs	@acc[5],@acc[5],$t3
	ldr	$t3,[sp,#28]			@ a[7]
	umlal	@acc[7],$t1,$t2,$bj		@ "r[6]"+=a[6]*b[i]
	eor	$t2,$t2,$t2
	adcs	@acc[6],@acc[6],$t4
	 ldr	@acc[0],[sp,#36]		@ restore overflow bit
	umlal	@acc[8],$t2,$t3,$bj		@ "r[7]"+=a[7]*b[i]
	eor	$t3,$t3,$t3
	adcs	@acc[7],@acc[7],$t0
	adcs	@acc[8],@acc[8],$t1
	adcs	@acc[0],$acc[0],$t2
	adc	$t3,$t3,#0			@ new overflow bit
___
	push(@acc,shift(@acc));			# rotate registers, so that
						# "r[i]" becomes r[i]
}
$code.=<<___;
	@ last multiplication-less reduction
	adds	@acc[3],@acc[3],@acc[0]
	ldr	$r_ptr,[sp,#32]			@ restore r_ptr
	adcs	@acc[4],@acc[4],#0
	adcs	@acc[5],@acc[5],#0
	adcs	@acc[6],@acc[6],@acc[0]
	adcs	@acc[7],@acc[7],#0
	adcs	@acc[8],@acc[8],@acc[0]
	adc	$t3,$t3,#0
	subs	@acc[7],@acc[7],@acc[0]
	sbcs	@acc[8],@acc[8],#0
	sbc	@acc[0],$t3,#0			@ overflow bit

	@ Final step is "if result > mod, subtract mod", but we do it
	@ "other way around", namely subtract modulus from result
	@ and if it borrowed, add modulus back.

713 714 715
	adds	@acc[1],@acc[1],#1		@ subs	@acc[1],@acc[1],#-1
	adcs	@acc[2],@acc[2],#0		@ sbcs	@acc[2],@acc[2],#-1
	adcs	@acc[3],@acc[3],#0		@ sbcs	@acc[3],@acc[3],#-1
716 717 718 719
	sbcs	@acc[4],@acc[4],#0
	sbcs	@acc[5],@acc[5],#0
	sbcs	@acc[6],@acc[6],#0
	sbcs	@acc[7],@acc[7],#1
720
	adcs	@acc[8],@acc[8],#0		@ sbcs	@acc[8],@acc[8],#-1
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	ldr	lr,[sp,#44]			@ restore lr
	sbc	@acc[0],@acc[0],#0		@ broadcast borrow bit
	add	sp,sp,#48

	@ Note that because mod has special form, i.e. consists of
	@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
	@ broadcasting borrow bit to a register, @acc[0], and using it as
	@ a whole or extracting single bit.

	adds	@acc[1],@acc[1],@acc[0]		@ add modulus or zero
	adcs	@acc[2],@acc[2],@acc[0]
	str	@acc[1],[$r_ptr,#0]
	adcs	@acc[3],@acc[3],@acc[0]
	str	@acc[2],[$r_ptr,#4]
	adcs	@acc[4],@acc[4],#0
	str	@acc[3],[$r_ptr,#8]
	adcs	@acc[5],@acc[5],#0
	str	@acc[4],[$r_ptr,#12]
	adcs	@acc[6],@acc[6],#0
	str	@acc[5],[$r_ptr,#16]
	adcs	@acc[7],@acc[7],@acc[0],lsr#31
	str	@acc[6],[$r_ptr,#20]
	adc	@acc[8],@acc[8],@acc[0]
	str	@acc[7],[$r_ptr,#24]
	str	@acc[8],[$r_ptr,#28]

	mov	pc,lr
748
.size	__ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
___
}

{
my ($out,$inp,$index,$mask)=map("r$_",(0..3));
$code.=<<___;
@ void	ecp_nistz256_scatter_w5(void *r0,const P256_POINT *r1,
@					 int r2);
.globl	ecp_nistz256_scatter_w5
.type	ecp_nistz256_scatter_w5,%function
.align	5
ecp_nistz256_scatter_w5:
	stmdb	sp!,{r4-r11}

	add	$out,$out,$index,lsl#2

	ldmia	$inp!,{r4-r11}		@ X
	str	r4,[$out,#64*0-4]
	str	r5,[$out,#64*1-4]
	str	r6,[$out,#64*2-4]
	str	r7,[$out,#64*3-4]
	str	r8,[$out,#64*4-4]
	str	r9,[$out,#64*5-4]
	str	r10,[$out,#64*6-4]
	str	r11,[$out,#64*7-4]
	add	$out,$out,#64*8

	ldmia	$inp!,{r4-r11}		@ Y
	str	r4,[$out,#64*0-4]
	str	r5,[$out,#64*1-4]
	str	r6,[$out,#64*2-4]
	str	r7,[$out,#64*3-4]
	str	r8,[$out,#64*4-4]
	str	r9,[$out,#64*5-4]
	str	r10,[$out,#64*6-4]
	str	r11,[$out,#64*7-4]
	add	$out,$out,#64*8

	ldmia	$inp,{r4-r11}		@ Z
	str	r4,[$out,#64*0-4]
	str	r5,[$out,#64*1-4]
	str	r6,[$out,#64*2-4]
	str	r7,[$out,#64*3-4]
	str	r8,[$out,#64*4-4]
	str	r9,[$out,#64*5-4]
	str	r10,[$out,#64*6-4]
	str	r11,[$out,#64*7-4]

	ldmia	sp!,{r4-r11}
#if __ARM_ARCH__>=5 || defined(__thumb__)
	bx	lr
#else
	mov	pc,lr
#endif
.size	ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5

@ void	ecp_nistz256_gather_w5(P256_POINT *r0,const void *r1,
@					      int r2);
.globl	ecp_nistz256_gather_w5
.type	ecp_nistz256_gather_w5,%function
.align	5
ecp_nistz256_gather_w5:
	stmdb	sp!,{r4-r11}

	cmp	$index,#0
	mov	$mask,#0
815 816 817
#ifdef	__thumb2__
	itt	ne
#endif
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	subne	$index,$index,#1
	movne	$mask,#-1
	add	$inp,$inp,$index,lsl#2

	ldr	r4,[$inp,#64*0]
	ldr	r5,[$inp,#64*1]
	ldr	r6,[$inp,#64*2]
	and	r4,r4,$mask
	ldr	r7,[$inp,#64*3]
	and	r5,r5,$mask
	ldr	r8,[$inp,#64*4]
	and	r6,r6,$mask
	ldr	r9,[$inp,#64*5]
	and	r7,r7,$mask
	ldr	r10,[$inp,#64*6]
	and	r8,r8,$mask
	ldr	r11,[$inp,#64*7]
	add	$inp,$inp,#64*8
	and	r9,r9,$mask
	and	r10,r10,$mask
	and	r11,r11,$mask
	stmia	$out!,{r4-r11}	@ X

	ldr	r4,[$inp,#64*0]
	ldr	r5,[$inp,#64*1]
	ldr	r6,[$inp,#64*2]
	and	r4,r4,$mask
	ldr	r7,[$inp,#64*3]
	and	r5,r5,$mask
	ldr	r8,[$inp,#64*4]
	and	r6,r6,$mask
	ldr	r9,[$inp,#64*5]
	and	r7,r7,$mask
	ldr	r10,[$inp,#64*6]
	and	r8,r8,$mask
	ldr	r11,[$inp,#64*7]
	add	$inp,$inp,#64*8
	and	r9,r9,$mask
	and	r10,r10,$mask
	and	r11,r11,$mask
	stmia	$out!,{r4-r11}	@ Y

	ldr	r4,[$inp,#64*0]
	ldr	r5,[$inp,#64*1]
	ldr	r6,[$inp,#64*2]
	and	r4,r4,$mask
	ldr	r7,[$inp,#64*3]
	and	r5,r5,$mask
	ldr	r8,[$inp,#64*4]
	and	r6,r6,$mask
	ldr	r9,[$inp,#64*5]
	and	r7,r7,$mask
	ldr	r10,[$inp,#64*6]
	and	r8,r8,$mask
	ldr	r11,[$inp,#64*7]
	and	r9,r9,$mask
	and	r10,r10,$mask
	and	r11,r11,$mask
	stmia	$out,{r4-r11}		@ Z

	ldmia	sp!,{r4-r11}
#if __ARM_ARCH__>=5 || defined(__thumb__)
	bx	lr
#else
	mov	pc,lr
#endif
.size	ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5

@ void	ecp_nistz256_scatter_w7(void *r0,const P256_POINT_AFFINE *r1,
@					 int r2);
.globl	ecp_nistz256_scatter_w7
.type	ecp_nistz256_scatter_w7,%function
.align	5
ecp_nistz256_scatter_w7:
	add	$out,$out,$index
	mov	$index,#64/4
.Loop_scatter_w7:
	ldr	$mask,[$inp],#4
	subs	$index,$index,#1
	strb	$mask,[$out,#64*0-1]
	mov	$mask,$mask,lsr#8
	strb	$mask,[$out,#64*1-1]
	mov	$mask,$mask,lsr#8
	strb	$mask,[$out,#64*2-1]
	mov	$mask,$mask,lsr#8
	strb	$mask,[$out,#64*3-1]
	add	$out,$out,#64*4
	bne	.Loop_scatter_w7

#if __ARM_ARCH__>=5 || defined(__thumb__)
	bx	lr
#else
	mov	pc,lr
#endif
.size	ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7

@ void	ecp_nistz256_gather_w7(P256_POINT_AFFINE *r0,const void *r1,
@						     int r2);
.globl	ecp_nistz256_gather_w7
.type	ecp_nistz256_gather_w7,%function
.align	5
ecp_nistz256_gather_w7:
	stmdb	sp!,{r4-r7}

	cmp	$index,#0
	mov	$mask,#0
924 925 926
#ifdef	__thumb2__
	itt	ne
#endif
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	subne	$index,$index,#1
	movne	$mask,#-1
	add	$inp,$inp,$index
	mov	$index,#64/4
	nop
.Loop_gather_w7:
	ldrb	r4,[$inp,#64*0]
	subs	$index,$index,#1
	ldrb	r5,[$inp,#64*1]
	ldrb	r6,[$inp,#64*2]
	ldrb	r7,[$inp,#64*3]
	add	$inp,$inp,#64*4
	orr	r4,r4,r5,lsl#8
	orr	r4,r4,r6,lsl#16
	orr	r4,r4,r7,lsl#24
	and	r4,r4,$mask
	str	r4,[$out],#4
	bne	.Loop_gather_w7

	ldmia	sp!,{r4-r7}
#if __ARM_ARCH__>=5 || defined(__thumb__)
	bx	lr
#else
	mov	pc,lr
#endif
.size	ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7
___
}
if (0) {
# In comparison to integer-only equivalent of below subroutine:
#
# Cortex-A8	+10%
# Cortex-A9	-10%
# Snapdragon S4	+5%
#
# As not all time is spent in multiplication, overall impact is deemed
# too low to care about.

my ($A0,$A1,$A2,$A3,$Bi,$zero,$temp)=map("d$_",(0..7));
my $mask="q4";
my $mult="q5";
my @AxB=map("q$_",(8..15));

my ($rptr,$aptr,$bptr,$toutptr)=map("r$_",(0..3));

$code.=<<___;
#if __ARM_ARCH__>=7
.fpu	neon

.globl	ecp_nistz256_mul_mont_neon
.type	ecp_nistz256_mul_mont_neon,%function
.align	5
ecp_nistz256_mul_mont_neon:
	mov	ip,sp
	stmdb	sp!,{r4-r9}
	vstmdb	sp!,{q4-q5}		@ ABI specification says so

	sub		$toutptr,sp,#40
	vld1.32		{${Bi}[0]},[$bptr,:32]!
	veor		$zero,$zero,$zero
	vld1.32		{$A0-$A3}, [$aptr]		@ can't specify :32 :-(
	vzip.16		$Bi,$zero
	mov		sp,$toutptr			@ alloca
	vmov.i64	$mask,#0xffff

	vmull.u32	@AxB[0],$Bi,${A0}[0]
	vmull.u32	@AxB[1],$Bi,${A0}[1]
	vmull.u32	@AxB[2],$Bi,${A1}[0]
	vmull.u32	@AxB[3],$Bi,${A1}[1]
	 vshr.u64	$temp,@AxB[0]#lo,#16
	vmull.u32	@AxB[4],$Bi,${A2}[0]
	 vadd.u64	@AxB[0]#hi,@AxB[0]#hi,$temp
	vmull.u32	@AxB[5],$Bi,${A2}[1]
	 vshr.u64	$temp,@AxB[0]#hi,#16		@ upper 32 bits of a[0]*b[0]
	vmull.u32	@AxB[6],$Bi,${A3}[0]
	 vand.u64	@AxB[0],@AxB[0],$mask		@ lower 32 bits of a[0]*b[0]
	vmull.u32	@AxB[7],$Bi,${A3}[1]
___
for($i=1;$i<8;$i++) {
$code.=<<___;
	 vld1.32	{${Bi}[0]},[$bptr,:32]!
	 veor		$zero,$zero,$zero
	vadd.u64	@AxB[1]#lo,@AxB[1]#lo,$temp	@ reduction
	vshl.u64	$mult,@AxB[0],#32
	vadd.u64	@AxB[3],@AxB[3],@AxB[0]
	vsub.u64	$mult,$mult,@AxB[0]
	 vzip.16	$Bi,$zero
	vadd.u64	@AxB[6],@AxB[6],@AxB[0]
	vadd.u64	@AxB[7],@AxB[7],$mult
___
	push(@AxB,shift(@AxB));
$code.=<<___;
	vmlal.u32	@AxB[0],$Bi,${A0}[0]
	vmlal.u32	@AxB[1],$Bi,${A0}[1]
	vmlal.u32	@AxB[2],$Bi,${A1}[0]
	vmlal.u32	@AxB[3],$Bi,${A1}[1]
	 vshr.u64	$temp,@AxB[0]#lo,#16
	vmlal.u32	@AxB[4],$Bi,${A2}[0]
	 vadd.u64	@AxB[0]#hi,@AxB[0]#hi,$temp
	vmlal.u32	@AxB[5],$Bi,${A2}[1]
	 vshr.u64	$temp,@AxB[0]#hi,#16		@ upper 33 bits of a[0]*b[i]+t[0]
	vmlal.u32	@AxB[6],$Bi,${A3}[0]
	 vand.u64	@AxB[0],@AxB[0],$mask		@ lower 32 bits of a[0]*b[0]
	vmull.u32	@AxB[7],$Bi,${A3}[1]
___
}
$code.=<<___;
	vadd.u64	@AxB[1]#lo,@AxB[1]#lo,$temp	@ last reduction
	vshl.u64	$mult,@AxB[0],#32
	vadd.u64	@AxB[3],@AxB[3],@AxB[0]
	vsub.u64	$mult,$mult,@AxB[0]
	vadd.u64	@AxB[6],@AxB[6],@AxB[0]
	vadd.u64	@AxB[7],@AxB[7],$mult

	vshr.u64	$temp,@AxB[1]#lo,#16		@ convert
	vadd.u64	@AxB[1]#hi,@AxB[1]#hi,$temp
	vshr.u64	$temp,@AxB[1]#hi,#16
	vzip.16		@AxB[1]#lo,@AxB[1]#hi
___
foreach (2..7) {
$code.=<<___;
	vadd.u64	@AxB[$_]#lo,@AxB[$_]#lo,$temp
	vst1.32		{@AxB[$_-1]#lo[0]},[$toutptr,:32]!
	vshr.u64	$temp,@AxB[$_]#lo,#16
	vadd.u64	@AxB[$_]#hi,@AxB[$_]#hi,$temp
	vshr.u64	$temp,@AxB[$_]#hi,#16
	vzip.16		@AxB[$_]#lo,@AxB[$_]#hi
___
}
$code.=<<___;
	vst1.32		{@AxB[7]#lo[0]},[$toutptr,:32]!
	vst1.32		{$temp},[$toutptr]		@ upper 33 bits

	ldr	r1,[sp,#0]
	ldr	r2,[sp,#4]
	ldr	r3,[sp,#8]
	subs	r1,r1,#-1
	ldr	r4,[sp,#12]
	sbcs	r2,r2,#-1
	ldr	r5,[sp,#16]
	sbcs	r3,r3,#-1
	ldr	r6,[sp,#20]
	sbcs	r4,r4,#0
	ldr	r7,[sp,#24]
	sbcs	r5,r5,#0
	ldr	r8,[sp,#28]
	sbcs	r6,r6,#0
	ldr	r9,[sp,#32]				@ top-most bit
	sbcs	r7,r7,#1
	sub	sp,ip,#40+16
	sbcs	r8,r8,#-1
	sbc	r9,r9,#0
        vldmia  sp!,{q4-q5}

	adds	r1,r1,r9
	adcs	r2,r2,r9
	str	r1,[$rptr,#0]
	adcs	r3,r3,r9
	str	r2,[$rptr,#4]
	adcs	r4,r4,#0
	str	r3,[$rptr,#8]
	adcs	r5,r5,#0
	str	r4,[$rptr,#12]
	adcs	r6,r6,#0
	str	r5,[$rptr,#16]
	adcs	r7,r7,r9,lsr#31
	str	r6,[$rptr,#20]
	adcs	r8,r8,r9
	str	r7,[$rptr,#24]
	str	r8,[$rptr,#28]

        ldmia   sp!,{r4-r9}
	bx	lr
.size	ecp_nistz256_mul_mont_neon,.-ecp_nistz256_mul_mont_neon
#endif
___
}

{{{
########################################################################
# Below $aN assignment matches order in which 256-bit result appears in
1108
# register bank at return from __ecp_nistz256_mul_mont, so that we can
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
# skip over reloading it from memory. This means that below functions
# use custom calling sequence accepting 256-bit input in registers,
# output pointer in r0, $r_ptr, and optional pointer in r2, $b_ptr.
#
# See their "normal" counterparts for insights on calculations.

my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,
    $t0,$t1,$t2,$t3)=map("r$_",(11,3..10,12,14,1));
my $ff=$b_ptr;

$code.=<<___;
.type	__ecp_nistz256_sub_from,%function
.align	5
__ecp_nistz256_sub_from:
	str	lr,[sp,#-4]!		@ push lr

	 ldr	$t0,[$b_ptr,#0]
	 ldr	$t1,[$b_ptr,#4]
	 ldr	$t2,[$b_ptr,#8]
	 ldr	$t3,[$b_ptr,#12]
	subs	$a0,$a0,$t0
	 ldr	$t0,[$b_ptr,#16]
	sbcs	$a1,$a1,$t1
	 ldr	$t1,[$b_ptr,#20]
	sbcs	$a2,$a2,$t2
	 ldr	$t2,[$b_ptr,#24]
	sbcs	$a3,$a3,$t3
	 ldr	$t3,[$b_ptr,#28]
	sbcs	$a4,$a4,$t0
	sbcs	$a5,$a5,$t1
	sbcs	$a6,$a6,$t2
	sbcs	$a7,$a7,$t3
	sbc	$ff,$ff,$ff		@ broadcast borrow bit
	ldr	lr,[sp],#4		@ pop lr

	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
	str	$a0,[$r_ptr,#0]
	adcs	$a2,$a2,$ff
	str	$a1,[$r_ptr,#4]
	adcs	$a3,$a3,#0
	str	$a2,[$r_ptr,#8]
	adcs	$a4,$a4,#0
	str	$a3,[$r_ptr,#12]
	adcs	$a5,$a5,#0
	str	$a4,[$r_ptr,#16]
	adcs	$a6,$a6,$ff,lsr#31
	str	$a5,[$r_ptr,#20]
	adcs	$a7,$a7,$ff
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
.size	__ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from

.type	__ecp_nistz256_sub_morf,%function
.align	5
__ecp_nistz256_sub_morf:
	str	lr,[sp,#-4]!		@ push lr

	 ldr	$t0,[$b_ptr,#0]
	 ldr	$t1,[$b_ptr,#4]
	 ldr	$t2,[$b_ptr,#8]
	 ldr	$t3,[$b_ptr,#12]
	subs	$a0,$t0,$a0
	 ldr	$t0,[$b_ptr,#16]
	sbcs	$a1,$t1,$a1
	 ldr	$t1,[$b_ptr,#20]
	sbcs	$a2,$t2,$a2
	 ldr	$t2,[$b_ptr,#24]
	sbcs	$a3,$t3,$a3
	 ldr	$t3,[$b_ptr,#28]
	sbcs	$a4,$t0,$a4
	sbcs	$a5,$t1,$a5
	sbcs	$a6,$t2,$a6
	sbcs	$a7,$t3,$a7
	sbc	$ff,$ff,$ff		@ broadcast borrow bit
	ldr	lr,[sp],#4		@ pop lr

	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
	str	$a0,[$r_ptr,#0]
	adcs	$a2,$a2,$ff
	str	$a1,[$r_ptr,#4]
	adcs	$a3,$a3,#0
	str	$a2,[$r_ptr,#8]
	adcs	$a4,$a4,#0
	str	$a3,[$r_ptr,#12]
	adcs	$a5,$a5,#0
	str	$a4,[$r_ptr,#16]
	adcs	$a6,$a6,$ff,lsr#31
	str	$a5,[$r_ptr,#20]
	adcs	$a7,$a7,$ff
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
.size	__ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf

1208
.type	__ecp_nistz256_add_self,%function
1209
.align	4
1210
__ecp_nistz256_add_self:
1211 1212 1213 1214 1215 1216 1217 1218 1219
	adds	$a0,$a0,$a0		@ a[0:7]+=a[0:7]
	adcs	$a1,$a1,$a1
	adcs	$a2,$a2,$a2
	adcs	$a3,$a3,$a3
	adcs	$a4,$a4,$a4
	adcs	$a5,$a5,$a5
	adcs	$a6,$a6,$a6
	mov	$ff,#0
	adcs	$a7,$a7,$a7
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	adc	$ff,$ff,#0

	@ if a+b >= modulus, subtract modulus.
	@
	@ But since comparison implies subtraction, we subtract
	@ modulus and then add it back if subraction borrowed.

	subs	$a0,$a0,#-1
	sbcs	$a1,$a1,#-1
	sbcs	$a2,$a2,#-1
	sbcs	$a3,$a3,#0
	sbcs	$a4,$a4,#0
	sbcs	$a5,$a5,#0
	sbcs	$a6,$a6,#1
	sbcs	$a7,$a7,#-1
	sbc	$ff,$ff,#0
1236

1237 1238 1239 1240 1241 1242 1243
	@ Note that because mod has special form, i.e. consists of
	@ 0xffffffff, 1 and 0s, we can conditionally synthesize it by
	@ using value of borrow as a whole or extracting single bit.
	@ Follow $ff register...

	adds	$a0,$a0,$ff		@ add synthesized modulus
	adcs	$a1,$a1,$ff
1244
	str	$a0,[$r_ptr,#0]
1245
	adcs	$a2,$a2,$ff
1246
	str	$a1,[$r_ptr,#4]
1247
	adcs	$a3,$a3,#0
1248
	str	$a2,[$r_ptr,#8]
1249
	adcs	$a4,$a4,#0
1250
	str	$a3,[$r_ptr,#12]
1251
	adcs	$a5,$a5,#0
1252
	str	$a4,[$r_ptr,#16]
1253
	adcs	$a6,$a6,$ff,lsr#31
1254
	str	$a5,[$r_ptr,#20]
1255
	adcs	$a7,$a7,$ff
1256 1257 1258 1259
	str	$a6,[$r_ptr,#24]
	str	$a7,[$r_ptr,#28]

	mov	pc,lr
1260
.size	__ecp_nistz256_add_self,.-__ecp_nistz256_add_self
1261 1262 1263 1264

___

########################################################################
S
Shlomi Fish 已提交
1265
# following subroutines are "literal" implementation of those found in
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
{
my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
# above map() describes stack layout with 5 temporary
# 256-bit vectors on top. Then note that we push
# starting from r0, which means that we have copy of
# input arguments just below these temporary vectors.

$code.=<<___;
.globl	ecp_nistz256_point_double
.type	ecp_nistz256_point_double,%function
.align	5
ecp_nistz256_point_double:
	stmdb	sp!,{r0-r12,lr}		@ push from r0, unusual, but intentional
	sub	sp,sp,#32*5

1286
.Lpoint_double_shortcut:
1287 1288 1289 1290 1291
	add	r3,sp,#$in_x
	ldmia	$a_ptr!,{r4-r11}	@ copy in_x
	stmia	r3,{r4-r11}

	add	$r_ptr,sp,#$S
1292
	bl	__ecp_nistz256_mul_by_2	@ p256_mul_by_2(S, in_y);
1293 1294 1295 1296

	add	$b_ptr,$a_ptr,#32
	add	$a_ptr,$a_ptr,#32
	add	$r_ptr,sp,#$Zsqr
1297
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Zsqr, in_z);
1298 1299 1300 1301

	add	$a_ptr,sp,#$S
	add	$b_ptr,sp,#$S
	add	$r_ptr,sp,#$S
1302
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(S, S);
1303 1304 1305 1306 1307

	ldr	$b_ptr,[sp,#32*5+4]
	add	$a_ptr,$b_ptr,#32
	add	$b_ptr,$b_ptr,#64
	add	$r_ptr,sp,#$tmp0
1308
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(tmp0, in_z, in_y);
1309 1310 1311

	ldr	$r_ptr,[sp,#32*5]
	add	$r_ptr,$r_ptr,#64
1312
	bl	__ecp_nistz256_add_self	@ p256_mul_by_2(res_z, tmp0);
1313 1314 1315 1316

	add	$a_ptr,sp,#$in_x
	add	$b_ptr,sp,#$Zsqr
	add	$r_ptr,sp,#$M
1317
	bl	__ecp_nistz256_add	@ p256_add(M, in_x, Zsqr);
1318 1319 1320 1321

	add	$a_ptr,sp,#$in_x
	add	$b_ptr,sp,#$Zsqr
	add	$r_ptr,sp,#$Zsqr
1322
	bl	__ecp_nistz256_sub	@ p256_sub(Zsqr, in_x, Zsqr);
1323 1324 1325 1326

	add	$a_ptr,sp,#$S
	add	$b_ptr,sp,#$S
	add	$r_ptr,sp,#$tmp0
1327
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(tmp0, S);
1328 1329 1330 1331

	add	$a_ptr,sp,#$Zsqr
	add	$b_ptr,sp,#$M
	add	$r_ptr,sp,#$M
1332
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(M, M, Zsqr);
1333 1334 1335 1336

	ldr	$r_ptr,[sp,#32*5]
	add	$a_ptr,sp,#$tmp0
	add	$r_ptr,$r_ptr,#32
1337
	bl	__ecp_nistz256_div_by_2	@ p256_div_by_2(res_y, tmp0);
1338 1339 1340

	add	$a_ptr,sp,#$M
	add	$r_ptr,sp,#$M
1341
	bl	__ecp_nistz256_mul_by_3	@ p256_mul_by_3(M, M);
1342 1343 1344 1345

	add	$a_ptr,sp,#$in_x
	add	$b_ptr,sp,#$S
	add	$r_ptr,sp,#$S
1346
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S, S, in_x);
1347 1348

	add	$r_ptr,sp,#$tmp0
1349
	bl	__ecp_nistz256_add_self	@ p256_mul_by_2(tmp0, S);
1350 1351 1352 1353

	ldr	$r_ptr,[sp,#32*5]
	add	$a_ptr,sp,#$M
	add	$b_ptr,sp,#$M
1354
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(res_x, M);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

	add	$b_ptr,sp,#$tmp0
	bl	__ecp_nistz256_sub_from	@ p256_sub(res_x, res_x, tmp0);

	add	$b_ptr,sp,#$S
	add	$r_ptr,sp,#$S
	bl	__ecp_nistz256_sub_morf	@ p256_sub(S, S, res_x);

	add	$a_ptr,sp,#$M
	add	$b_ptr,sp,#$S
1365
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S, S, M);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	ldr	$r_ptr,[sp,#32*5]
	add	$b_ptr,$r_ptr,#32
	add	$r_ptr,$r_ptr,#32
	bl	__ecp_nistz256_sub_from	@ p256_sub(res_y, S, res_y);

	add	sp,sp,#32*5+16		@ +16 means "skip even over saved r0-r3"
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_point_double,.-ecp_nistz256_point_double
___
}

########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
#			      const P256_POINT *in2);
{
my ($res_x,$res_y,$res_z,
    $in1_x,$in1_y,$in1_z,
    $in2_x,$in2_y,$in2_z,
    $H,$Hsqr,$R,$Rsqr,$Hcub,
    $U1,$U2,$S1,$S2)=map(32*$_,(0..17));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
# above map() describes stack layout with 18 temporary
# 256-bit vectors on top. Then note that we push
# starting from r0, which means that we have copy of
# input arguments just below these temporary vectors.
# We use three of them for !in1infty, !in2intfy and
# result of check for zero.

$code.=<<___;
.globl	ecp_nistz256_point_add
.type	ecp_nistz256_point_add,%function
.align	5
ecp_nistz256_point_add:
	stmdb	sp!,{r0-r12,lr}		@ push from r0, unusual, but intentional
1406
	sub	sp,sp,#32*18+16
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	ldmia	$b_ptr!,{r4-r11}	@ copy in2
	add	r3,sp,#$in2_x
	orr	r12,r4,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$b_ptr!,{r4-r11}
	orr	r12,r12,r4
	orr	r12,r12,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$b_ptr,{r4-r11}
	cmp	r12,#0
1430 1431 1432
#ifdef	__thumb2__
	it	ne
#endif
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	movne	r12,#-1
	stmia	r3,{r4-r11}
	str	r12,[sp,#32*18+8]	@ !in2infty

	ldmia	$a_ptr!,{r4-r11}	@ copy in1
	add	r3,sp,#$in1_x
	orr	r12,r4,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$a_ptr!,{r4-r11}
	orr	r12,r12,r4
	orr	r12,r12,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$a_ptr,{r4-r11}
	cmp	r12,#0
1459 1460 1461
#ifdef	__thumb2__
	it	ne
#endif
1462 1463 1464 1465 1466 1467 1468
	movne	r12,#-1
	stmia	r3,{r4-r11}
	str	r12,[sp,#32*18+4]	@ !in1infty

	add	$a_ptr,sp,#$in2_z
	add	$b_ptr,sp,#$in2_z
	add	$r_ptr,sp,#$Z2sqr
1469
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Z2sqr, in2_z);
1470 1471 1472 1473

	add	$a_ptr,sp,#$in1_z
	add	$b_ptr,sp,#$in1_z
	add	$r_ptr,sp,#$Z1sqr
1474
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Z1sqr, in1_z);
1475 1476 1477 1478

	add	$a_ptr,sp,#$in2_z
	add	$b_ptr,sp,#$Z2sqr
	add	$r_ptr,sp,#$S1
1479
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S1, Z2sqr, in2_z);
1480 1481 1482 1483

	add	$a_ptr,sp,#$in1_z
	add	$b_ptr,sp,#$Z1sqr
	add	$r_ptr,sp,#$S2
1484
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, Z1sqr, in1_z);
1485 1486 1487 1488

	add	$a_ptr,sp,#$in1_y
	add	$b_ptr,sp,#$S1
	add	$r_ptr,sp,#$S1
1489
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S1, S1, in1_y);
1490 1491 1492 1493

	add	$a_ptr,sp,#$in2_y
	add	$b_ptr,sp,#$S2
	add	$r_ptr,sp,#$S2
1494
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, S2, in2_y);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

	add	$b_ptr,sp,#$S1
	add	$r_ptr,sp,#$R
	bl	__ecp_nistz256_sub_from	@ p256_sub(R, S2, S1);

	orr	$a0,$a0,$a1		@ see if result is zero
	orr	$a2,$a2,$a3
	orr	$a4,$a4,$a5
	orr	$a0,$a0,$a2
	orr	$a4,$a4,$a6
	orr	$a0,$a0,$a7
	 add	$a_ptr,sp,#$in1_x
	orr	$a0,$a0,$a4
	 add	$b_ptr,sp,#$Z2sqr
	str	$a0,[sp,#32*18+12]

	add	$r_ptr,sp,#$U1
1512
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(U1, in1_x, Z2sqr);
1513 1514 1515 1516

	add	$a_ptr,sp,#$in2_x
	add	$b_ptr,sp,#$Z1sqr
	add	$r_ptr,sp,#$U2
1517
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(U2, in2_x, Z1sqr);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	add	$b_ptr,sp,#$U1
	add	$r_ptr,sp,#$H
	bl	__ecp_nistz256_sub_from	@ p256_sub(H, U2, U1);

	orr	$a0,$a0,$a1		@ see if result is zero
	orr	$a2,$a2,$a3
	orr	$a4,$a4,$a5
	orr	$a0,$a0,$a2
	orr	$a4,$a4,$a6
	orr	$a0,$a0,$a7
	orrs	$a0,$a0,$a4

	bne	.Ladd_proceed		@ is_equal(U1,U2)?

	ldr	$t0,[sp,#32*18+4]
	ldr	$t1,[sp,#32*18+8]
	ldr	$t2,[sp,#32*18+12]
	tst	$t0,$t1
	beq	.Ladd_proceed		@ (in1infty || in2infty)?
	tst	$t2,$t2
1539
	beq	.Ladd_double		@ is_equal(S1,S2)?
1540

1541
	ldr	$r_ptr,[sp,#32*18+16]
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	eor	r4,r4,r4
	eor	r5,r5,r5
	eor	r6,r6,r6
	eor	r7,r7,r7
	eor	r8,r8,r8
	eor	r9,r9,r9
	eor	r10,r10,r10
	eor	r11,r11,r11
	stmia	$r_ptr!,{r4-r11}
	stmia	$r_ptr!,{r4-r11}
	stmia	$r_ptr!,{r4-r11}
	b	.Ladd_done

1555 1556 1557 1558 1559 1560
.align	4
.Ladd_double:
	ldr	$a_ptr,[sp,#32*18+20]
	add	sp,sp,#32*(18-5)+16	@ difference in frame sizes
	b	.Lpoint_double_shortcut

1561 1562 1563 1564 1565
.align	4
.Ladd_proceed:
	add	$a_ptr,sp,#$R
	add	$b_ptr,sp,#$R
	add	$r_ptr,sp,#$Rsqr
1566
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Rsqr, R);
1567 1568 1569 1570

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$in1_z
	add	$r_ptr,sp,#$res_z
1571
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(res_z, H, in1_z);
1572 1573 1574 1575

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$H
	add	$r_ptr,sp,#$Hsqr
1576
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Hsqr, H);
1577 1578 1579 1580

	add	$a_ptr,sp,#$in2_z
	add	$b_ptr,sp,#$res_z
	add	$r_ptr,sp,#$res_z
1581
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(res_z, res_z, in2_z);
1582 1583 1584 1585

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$Hsqr
	add	$r_ptr,sp,#$Hcub
1586
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(Hcub, Hsqr, H);
1587 1588 1589 1590

	add	$a_ptr,sp,#$Hsqr
	add	$b_ptr,sp,#$U1
	add	$r_ptr,sp,#$U2
1591
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(U2, U1, Hsqr);
1592 1593

	add	$r_ptr,sp,#$Hsqr
1594
	bl	__ecp_nistz256_add_self	@ p256_mul_by_2(Hsqr, U2);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	add	$b_ptr,sp,#$Rsqr
	add	$r_ptr,sp,#$res_x
	bl	__ecp_nistz256_sub_morf	@ p256_sub(res_x, Rsqr, Hsqr);

	add	$b_ptr,sp,#$Hcub
	bl	__ecp_nistz256_sub_from	@  p256_sub(res_x, res_x, Hcub);

	add	$b_ptr,sp,#$U2
	add	$r_ptr,sp,#$res_y
	bl	__ecp_nistz256_sub_morf	@ p256_sub(res_y, U2, res_x);

	add	$a_ptr,sp,#$Hcub
	add	$b_ptr,sp,#$S1
	add	$r_ptr,sp,#$S2
1610
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, S1, Hcub);
1611 1612 1613 1614

	add	$a_ptr,sp,#$R
	add	$b_ptr,sp,#$res_y
	add	$r_ptr,sp,#$res_y
1615
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(res_y, res_y, R);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

	add	$b_ptr,sp,#$S2
	bl	__ecp_nistz256_sub_from	@ p256_sub(res_y, res_y, S2);

	ldr	r11,[sp,#32*18+4]	@ !in1intfy
	ldr	r12,[sp,#32*18+8]	@ !in2intfy
	add	r1,sp,#$res_x
	add	r2,sp,#$in2_x
	and	r10,r11,r12
	mvn	r11,r11
	add	r3,sp,#$in1_x
	and	r11,r11,r12
	mvn	r12,r12
1629
	ldr	$r_ptr,[sp,#32*18+16]
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
___
for($i=0;$i<96;$i+=8) {			# conditional moves
$code.=<<___;
	ldmia	r1!,{r4-r5}		@ res_x
	ldmia	r2!,{r6-r7}		@ in2_x
	ldmia	r3!,{r8-r9}		@ in1_x
	and	r4,r4,r10
	and	r5,r5,r10
	and	r6,r6,r11
	and	r7,r7,r11
	and	r8,r8,r12
	and	r9,r9,r12
	orr	r4,r4,r6
	orr	r5,r5,r7
	orr	r4,r4,r8
	orr	r5,r5,r9
	stmia	$r_ptr!,{r4-r5}
___
}
$code.=<<___;
.Ladd_done:
1651
	add	sp,sp,#32*18+16+16	@ +16 means "skip even over saved r0-r3"
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
#if __ARM_ARCH__>=5 || defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_point_add,.-ecp_nistz256_point_add
___
}

########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
#				     const P256_POINT_AFFINE *in2);
{
my ($res_x,$res_y,$res_z,
    $in1_x,$in1_y,$in1_z,
    $in2_x,$in2_y,
    $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
my $Z1sqr = $S2;
# above map() describes stack layout with 18 temporary
# 256-bit vectors on top. Then note that we push
# starting from r0, which means that we have copy of
# input arguments just below these temporary vectors.
# We use two of them for !in1infty, !in2intfy.

my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);

$code.=<<___;
.globl	ecp_nistz256_point_add_affine
.type	ecp_nistz256_point_add_affine,%function
.align	5
ecp_nistz256_point_add_affine:
	stmdb	sp!,{r0-r12,lr}		@ push from r0, unusual, but intentional
	sub	sp,sp,#32*15

	ldmia	$a_ptr!,{r4-r11}	@ copy in1
	add	r3,sp,#$in1_x
	orr	r12,r4,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$a_ptr!,{r4-r11}
	orr	r12,r12,r4
	orr	r12,r12,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$a_ptr,{r4-r11}
	cmp	r12,#0
1709 1710 1711
#ifdef	__thumb2__
	it	ne
#endif
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	movne	r12,#-1
	stmia	r3,{r4-r11}
	str	r12,[sp,#32*15+4]	@ !in1infty

	ldmia	$b_ptr!,{r4-r11}	@ copy in2
	add	r3,sp,#$in2_x
	orr	r12,r4,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	ldmia	$b_ptr!,{r4-r11}
	orr	r12,r12,r4
	orr	r12,r12,r5
	orr	r12,r12,r6
	orr	r12,r12,r7
	orr	r12,r12,r8
	orr	r12,r12,r9
	orr	r12,r12,r10
	orr	r12,r12,r11
	stmia	r3!,{r4-r11}
	cmp	r12,#0
1737 1738 1739
#ifdef	__thumb2__
	it	ne
#endif
1740 1741 1742 1743 1744 1745
	movne	r12,#-1
	str	r12,[sp,#32*15+8]	@ !in2infty

	add	$a_ptr,sp,#$in1_z
	add	$b_ptr,sp,#$in1_z
	add	$r_ptr,sp,#$Z1sqr
1746
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Z1sqr, in1_z);
1747 1748 1749 1750

	add	$a_ptr,sp,#$Z1sqr
	add	$b_ptr,sp,#$in2_x
	add	$r_ptr,sp,#$U2
1751
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(U2, Z1sqr, in2_x);
1752 1753 1754 1755 1756 1757 1758 1759

	add	$b_ptr,sp,#$in1_x
	add	$r_ptr,sp,#$H
	bl	__ecp_nistz256_sub_from	@ p256_sub(H, U2, in1_x);

	add	$a_ptr,sp,#$Z1sqr
	add	$b_ptr,sp,#$in1_z
	add	$r_ptr,sp,#$S2
1760
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, Z1sqr, in1_z);
1761 1762 1763 1764

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$in1_z
	add	$r_ptr,sp,#$res_z
1765
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(res_z, H, in1_z);
1766 1767 1768 1769

	add	$a_ptr,sp,#$in2_y
	add	$b_ptr,sp,#$S2
	add	$r_ptr,sp,#$S2
1770
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, S2, in2_y);
1771 1772 1773 1774 1775 1776 1777 1778

	add	$b_ptr,sp,#$in1_y
	add	$r_ptr,sp,#$R
	bl	__ecp_nistz256_sub_from	@ p256_sub(R, S2, in1_y);

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$H
	add	$r_ptr,sp,#$Hsqr
1779
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Hsqr, H);
1780 1781 1782 1783

	add	$a_ptr,sp,#$R
	add	$b_ptr,sp,#$R
	add	$r_ptr,sp,#$Rsqr
1784
	bl	__ecp_nistz256_mul_mont	@ p256_sqr_mont(Rsqr, R);
1785 1786 1787 1788

	add	$a_ptr,sp,#$H
	add	$b_ptr,sp,#$Hsqr
	add	$r_ptr,sp,#$Hcub
1789
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(Hcub, Hsqr, H);
1790 1791 1792 1793

	add	$a_ptr,sp,#$Hsqr
	add	$b_ptr,sp,#$in1_x
	add	$r_ptr,sp,#$U2
1794
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(U2, in1_x, Hsqr);
1795 1796

	add	$r_ptr,sp,#$Hsqr
1797
	bl	__ecp_nistz256_add_self	@ p256_mul_by_2(Hsqr, U2);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	add	$b_ptr,sp,#$Rsqr
	add	$r_ptr,sp,#$res_x
	bl	__ecp_nistz256_sub_morf	@ p256_sub(res_x, Rsqr, Hsqr);

	add	$b_ptr,sp,#$Hcub
	bl	__ecp_nistz256_sub_from	@  p256_sub(res_x, res_x, Hcub);

	add	$b_ptr,sp,#$U2
	add	$r_ptr,sp,#$res_y
	bl	__ecp_nistz256_sub_morf	@ p256_sub(res_y, U2, res_x);

	add	$a_ptr,sp,#$Hcub
	add	$b_ptr,sp,#$in1_y
	add	$r_ptr,sp,#$S2
1813
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(S2, in1_y, Hcub);
1814 1815 1816 1817

	add	$a_ptr,sp,#$R
	add	$b_ptr,sp,#$res_y
	add	$r_ptr,sp,#$res_y
1818
	bl	__ecp_nistz256_mul_mont	@ p256_mul_mont(res_y, res_y, R);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	add	$b_ptr,sp,#$S2
	bl	__ecp_nistz256_sub_from	@ p256_sub(res_y, res_y, S2);

	ldr	r11,[sp,#32*15+4]	@ !in1intfy
	ldr	r12,[sp,#32*15+8]	@ !in2intfy
	add	r1,sp,#$res_x
	add	r2,sp,#$in2_x
	and	r10,r11,r12
	mvn	r11,r11
	add	r3,sp,#$in1_x
	and	r11,r11,r12
	mvn	r12,r12
	ldr	$r_ptr,[sp,#32*15]
___
for($i=0;$i<64;$i+=8) {			# conditional moves
$code.=<<___;
	ldmia	r1!,{r4-r5}		@ res_x
	ldmia	r2!,{r6-r7}		@ in2_x
	ldmia	r3!,{r8-r9}		@ in1_x
	and	r4,r4,r10
	and	r5,r5,r10
	and	r6,r6,r11
	and	r7,r7,r11
	and	r8,r8,r12
	and	r9,r9,r12
	orr	r4,r4,r6
	orr	r5,r5,r7
	orr	r4,r4,r8
	orr	r5,r5,r9
	stmia	$r_ptr!,{r4-r5}
___
}
for(;$i<96;$i+=8) {
my $j=($i-64)/4;
$code.=<<___;
	ldmia	r1!,{r4-r5}		@ res_z
	ldmia	r3!,{r8-r9}		@ in1_z
	and	r4,r4,r10
	and	r5,r5,r10
	and	r6,r11,#@ONE_mont[$j]
	and	r7,r11,#@ONE_mont[$j+1]
	and	r8,r8,r12
	and	r9,r9,r12
	orr	r4,r4,r6
	orr	r5,r5,r7
	orr	r4,r4,r8
	orr	r5,r5,r9
	stmia	$r_ptr!,{r4-r5}
___
}
$code.=<<___;
	add	sp,sp,#32*15+16		@ +16 means "skip even over saved r0-r3"
#if __ARM_ARCH__>=5 || !defined(__thumb__)
	ldmia	sp!,{r4-r12,pc}
#else
	ldmia	sp!,{r4-r12,lr}
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine
___
}					}}}

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/geo;

	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;

	print $_,"\n";
}
close STDOUT;	# enforce flush