ecp_smpl.c 36.3 KB
Newer Older
1
/*
M
Matt Caswell 已提交
2
 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
R
Rich Salz 已提交
5 6 7 8
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
9
 */
R
Rich Salz 已提交
10

11
#include <openssl/err.h>
12
#include <openssl/symhacks.h>
13

14
#include "ec_lcl.h"
15 16

const EC_METHOD *EC_GFp_simple_method(void)
17 18 19 20 21 22 23 24 25 26 27
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_prime_field,
        ec_GFp_simple_group_init,
        ec_GFp_simple_group_finish,
        ec_GFp_simple_group_clear_finish,
        ec_GFp_simple_group_copy,
        ec_GFp_simple_group_set_curve,
        ec_GFp_simple_group_get_curve,
        ec_GFp_simple_group_get_degree,
28
        ec_group_simple_order_bits,
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        ec_GFp_simple_group_check_discriminant,
        ec_GFp_simple_point_init,
        ec_GFp_simple_point_finish,
        ec_GFp_simple_point_clear_finish,
        ec_GFp_simple_point_copy,
        ec_GFp_simple_point_set_to_infinity,
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
        ec_GFp_simple_point_set_affine_coordinates,
        ec_GFp_simple_point_get_affine_coordinates,
        0, 0, 0,
        ec_GFp_simple_add,
        ec_GFp_simple_dbl,
        ec_GFp_simple_invert,
        ec_GFp_simple_is_at_infinity,
        ec_GFp_simple_is_on_curve,
        ec_GFp_simple_cmp,
        ec_GFp_simple_make_affine,
        ec_GFp_simple_points_make_affine,
        0 /* mul */ ,
        0 /* precompute_mult */ ,
        0 /* have_precompute_mult */ ,
        ec_GFp_simple_field_mul,
        ec_GFp_simple_field_sqr,
        0 /* field_div */ ,
        0 /* field_encode */ ,
        0 /* field_decode */ ,
56 57 58 59 60 61 62 63 64 65
        0,                      /* field_set_to_one */
        ec_key_simple_priv2oct,
        ec_key_simple_oct2priv,
        0, /* set private */
        ec_key_simple_generate_key,
        ec_key_simple_check_key,
        ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ecdh_simple_compute_key
66 67 68 69
    };

    return &ret;
}
70

71 72
/*
 * Most method functions in this file are designed to work with
B
Bodo Möller 已提交
73 74 75 76 77
 * non-trivial representations of field elements if necessary
 * (see ecp_mont.c): while standard modular addition and subtraction
 * are used, the field_mul and field_sqr methods will be used for
 * multiplication, and field_encode and field_decode (if defined)
 * will be used for converting between representations.
78
 *
B
Bodo Möller 已提交
79 80 81 82 83 84
 * Functions ec_GFp_simple_points_make_affine() and
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
 * that if a non-trivial representation is used, it is a Montgomery
 * representation (i.e. 'encoding' means multiplying by some factor R).
 */

85
int ec_GFp_simple_group_init(EC_GROUP *group)
86 87 88 89
{
    group->field = BN_new();
    group->a = BN_new();
    group->b = BN_new();
90
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
R
Rich Salz 已提交
91 92 93
        BN_free(group->field);
        BN_free(group->a);
        BN_free(group->b);
94 95 96 97 98
        return 0;
    }
    group->a_is_minus3 = 0;
    return 1;
}
99

100
void ec_GFp_simple_group_finish(EC_GROUP *group)
101 102 103 104 105
{
    BN_free(group->field);
    BN_free(group->a);
    BN_free(group->b);
}
106 107

void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
108 109 110 111 112
{
    BN_clear_free(group->field);
    BN_clear_free(group->a);
    BN_clear_free(group->b);
}
113 114

int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
115 116 117 118 119 120 121
{
    if (!BN_copy(dest->field, src->field))
        return 0;
    if (!BN_copy(dest->a, src->a))
        return 0;
    if (!BN_copy(dest->b, src->b))
        return 0;
122

123
    dest->a_is_minus3 = src->a_is_minus3;
124

125 126
    return 1;
}
127

128
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                                  const BIGNUM *p, const BIGNUM *a,
                                  const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp_a;

    /* p must be a prime > 3 */
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
        ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
        return 0;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    tmp_a = BN_CTX_get(ctx);
    if (tmp_a == NULL)
        goto err;

    /* group->field */
    if (!BN_copy(group->field, p))
        goto err;
    BN_set_negative(group->field, 0);

    /* group->a */
    if (!BN_nnmod(tmp_a, a, p, ctx))
        goto err;
    if (group->meth->field_encode) {
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
            goto err;
    } else if (!BN_copy(group->a, tmp_a))
        goto err;

    /* group->b */
    if (!BN_nnmod(group->b, b, p, ctx))
        goto err;
    if (group->meth->field_encode)
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
            goto err;

    /* group->a_is_minus3 */
    if (!BN_add_word(tmp_a, 3))
        goto err;
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));

    ret = 1;
180 181

 err:
182
    BN_CTX_end(ctx);
R
Rich Salz 已提交
183
    BN_CTX_free(new_ctx);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    return ret;
}

int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
                                  BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX *new_ctx = NULL;

    if (p != NULL) {
        if (!BN_copy(p, group->field))
            return 0;
    }

    if (a != NULL || b != NULL) {
        if (group->meth->field_decode) {
            if (ctx == NULL) {
                ctx = new_ctx = BN_CTX_new();
                if (ctx == NULL)
                    return 0;
            }
            if (a != NULL) {
                if (!group->meth->field_decode(group, a, group->a, ctx))
                    goto err;
            }
            if (b != NULL) {
                if (!group->meth->field_decode(group, b, group->b, ctx))
                    goto err;
            }
        } else {
            if (a != NULL) {
                if (!BN_copy(a, group->a))
                    goto err;
            }
            if (b != NULL) {
                if (!BN_copy(b, group->b))
                    goto err;
            }
        }
    }

    ret = 1;
226

227
 err:
R
Rich Salz 已提交
228
    BN_CTX_free(new_ctx);
229 230
    return ret;
}
231

232
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
233 234 235
{
    return BN_num_bits(group->field);
}
236

237
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
    int ret = 0;
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
    const BIGNUM *p = group->field;
    BN_CTX *new_ctx = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL) {
            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
                  ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }
    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    tmp_1 = BN_CTX_get(ctx);
    tmp_2 = BN_CTX_get(ctx);
    order = BN_CTX_get(ctx);
    if (order == NULL)
        goto err;

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, a, group->a, ctx))
            goto err;
        if (!group->meth->field_decode(group, b, group->b, ctx))
            goto err;
    } else {
        if (!BN_copy(a, group->a))
            goto err;
        if (!BN_copy(b, group->b))
            goto err;
    }

273 274 275 276 277
    /*-
     * check the discriminant:
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
     * 0 =< a, b < p
     */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    if (BN_is_zero(a)) {
        if (BN_is_zero(b))
            goto err;
    } else if (!BN_is_zero(b)) {
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
            goto err;
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
            goto err;
        if (!BN_lshift(tmp_1, tmp_2, 2))
            goto err;
        /* tmp_1 = 4*a^3 */

        if (!BN_mod_sqr(tmp_2, b, p, ctx))
            goto err;
        if (!BN_mul_word(tmp_2, 27))
            goto err;
        /* tmp_2 = 27*b^2 */

        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
            goto err;
        if (BN_is_zero(a))
            goto err;
    }
    ret = 1;
B
Bodo Möller 已提交
302

303 304 305
 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
R
Rich Salz 已提交
306
    BN_CTX_free(new_ctx);
307 308
    return ret;
}
B
Bodo Möller 已提交
309

310
int ec_GFp_simple_point_init(EC_POINT *point)
311 312 313 314 315 316
{
    point->X = BN_new();
    point->Y = BN_new();
    point->Z = BN_new();
    point->Z_is_one = 0;

317
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
R
Rich Salz 已提交
318 319 320
        BN_free(point->X);
        BN_free(point->Y);
        BN_free(point->Z);
321 322 323 324
        return 0;
    }
    return 1;
}
325 326

void ec_GFp_simple_point_finish(EC_POINT *point)
327 328 329 330 331
{
    BN_free(point->X);
    BN_free(point->Y);
    BN_free(point->Z);
}
332 333

void ec_GFp_simple_point_clear_finish(EC_POINT *point)
334 335 336 337 338 339
{
    BN_clear_free(point->X);
    BN_clear_free(point->Y);
    BN_clear_free(point->Z);
    point->Z_is_one = 0;
}
340 341

int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
342 343 344 345 346 347 348 349
{
    if (!BN_copy(dest->X, src->X))
        return 0;
    if (!BN_copy(dest->Y, src->Y))
        return 0;
    if (!BN_copy(dest->Z, src->Z))
        return 0;
    dest->Z_is_one = src->Z_is_one;
350
    dest->curve_name = src->curve_name;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    return 1;
}

int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
                                        EC_POINT *point)
{
    point->Z_is_one = 0;
    BN_zero(point->Z);
    return 1;
}

int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                  EC_POINT *point,
                                                  const BIGNUM *x,
                                                  const BIGNUM *y,
                                                  const BIGNUM *z,
                                                  BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    int ret = 0;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    if (x != NULL) {
        if (!BN_nnmod(point->X, x, group->field, ctx))
            goto err;
        if (group->meth->field_encode) {
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
                goto err;
        }
    }

    if (y != NULL) {
        if (!BN_nnmod(point->Y, y, group->field, ctx))
            goto err;
        if (group->meth->field_encode) {
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
                goto err;
        }
    }

    if (z != NULL) {
        int Z_is_one;

        if (!BN_nnmod(point->Z, z, group->field, ctx))
            goto err;
        Z_is_one = BN_is_one(point->Z);
        if (group->meth->field_encode) {
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
                    goto err;
            } else {
                if (!group->
                    meth->field_encode(group, point->Z, point->Z, ctx))
                    goto err;
            }
        }
        point->Z_is_one = Z_is_one;
    }

    ret = 1;

418
 err:
R
Rich Salz 已提交
419
    BN_CTX_free(new_ctx);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    return ret;
}

int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                  const EC_POINT *point,
                                                  BIGNUM *x, BIGNUM *y,
                                                  BIGNUM *z, BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    int ret = 0;

    if (group->meth->field_decode != 0) {
        if (ctx == NULL) {
            ctx = new_ctx = BN_CTX_new();
            if (ctx == NULL)
                return 0;
        }

        if (x != NULL) {
            if (!group->meth->field_decode(group, x, point->X, ctx))
                goto err;
        }
        if (y != NULL) {
            if (!group->meth->field_decode(group, y, point->Y, ctx))
                goto err;
        }
        if (z != NULL) {
            if (!group->meth->field_decode(group, z, point->Z, ctx))
                goto err;
        }
    } else {
        if (x != NULL) {
            if (!BN_copy(x, point->X))
                goto err;
        }
        if (y != NULL) {
            if (!BN_copy(y, point->Y))
                goto err;
        }
        if (z != NULL) {
            if (!BN_copy(z, point->Z))
                goto err;
        }
    }

    ret = 1;
466

467
 err:
R
Rich Salz 已提交
468
    BN_CTX_free(new_ctx);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    return ret;
}

int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
                                               EC_POINT *point,
                                               const BIGNUM *x,
                                               const BIGNUM *y, BN_CTX *ctx)
{
    if (x == NULL || y == NULL) {
        /*
         * unlike for projective coordinates, we do not tolerate this
         */
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
              ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }

    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
                                                    BN_value_one(), ctx);
}

int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                               const EC_POINT *point,
                                               BIGNUM *x, BIGNUM *y,
                                               BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
    const BIGNUM *Z_;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    Z = BN_CTX_get(ctx);
    Z_1 = BN_CTX_get(ctx);
    Z_2 = BN_CTX_get(ctx);
    Z_3 = BN_CTX_get(ctx);
    if (Z_3 == NULL)
        goto err;

    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
            goto err;
        Z_ = Z;
    } else {
        Z_ = point->Z;
    }

    if (BN_is_one(Z_)) {
        if (group->meth->field_decode) {
            if (x != NULL) {
                if (!group->meth->field_decode(group, x, point->X, ctx))
                    goto err;
            }
            if (y != NULL) {
                if (!group->meth->field_decode(group, y, point->Y, ctx))
                    goto err;
            }
        } else {
            if (x != NULL) {
                if (!BN_copy(x, point->X))
                    goto err;
            }
            if (y != NULL) {
                if (!BN_copy(y, point->Y))
                    goto err;
            }
        }
    } else {
        if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) {
            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
                  ERR_R_BN_LIB);
            goto err;
        }

        if (group->meth->field_encode == 0) {
            /* field_sqr works on standard representation */
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
                goto err;
        } else {
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
                goto err;
        }

        if (x != NULL) {
            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in X:
             */
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
                goto err;
        }

        if (y != NULL) {
            if (group->meth->field_encode == 0) {
                /*
                 * field_mul works on standard representation
                 */
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
                    goto err;
            } else {
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
                    goto err;
            }

            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in Y:
             */
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
                goto err;
        }
    }

    ret = 1;
597 598

 err:
599
    BN_CTX_end(ctx);
R
Rich Salz 已提交
600
    BN_CTX_free(new_ctx);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    return ret;
}

int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
    int ret = 0;

    if (a == b)
        return EC_POINT_dbl(group, r, a, ctx);
    if (EC_POINT_is_at_infinity(group, a))
        return EC_POINT_copy(r, b);
    if (EC_POINT_is_at_infinity(group, b))
        return EC_POINT_copy(r, a);

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    n4 = BN_CTX_get(ctx);
    n5 = BN_CTX_get(ctx);
    n6 = BN_CTX_get(ctx);
    if (n6 == NULL)
        goto end;

    /*
     * Note that in this function we must not read components of 'a' or 'b'
     * once we have written the corresponding components of 'r'. ('r' might
     * be one of 'a' or 'b'.)
     */

    /* n1, n2 */
    if (b->Z_is_one) {
        if (!BN_copy(n1, a->X))
            goto end;
        if (!BN_copy(n2, a->Y))
            goto end;
        /* n1 = X_a */
        /* n2 = Y_a */
    } else {
        if (!field_sqr(group, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n1, a->X, n0, ctx))
            goto end;
        /* n1 = X_a * Z_b^2 */

        if (!field_mul(group, n0, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n2, a->Y, n0, ctx))
            goto end;
        /* n2 = Y_a * Z_b^3 */
    }

    /* n3, n4 */
    if (a->Z_is_one) {
        if (!BN_copy(n3, b->X))
            goto end;
        if (!BN_copy(n4, b->Y))
            goto end;
        /* n3 = X_b */
        /* n4 = Y_b */
    } else {
        if (!field_sqr(group, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n3, b->X, n0, ctx))
            goto end;
        /* n3 = X_b * Z_a^2 */

        if (!field_mul(group, n0, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n4, b->Y, n0, ctx))
            goto end;
        /* n4 = Y_b * Z_a^3 */
    }

    /* n5, n6 */
    if (!BN_mod_sub_quick(n5, n1, n3, p))
        goto end;
    if (!BN_mod_sub_quick(n6, n2, n4, p))
        goto end;
    /* n5 = n1 - n3 */
    /* n6 = n2 - n4 */

    if (BN_is_zero(n5)) {
        if (BN_is_zero(n6)) {
            /* a is the same point as b */
            BN_CTX_end(ctx);
            ret = EC_POINT_dbl(group, r, a, ctx);
            ctx = NULL;
            goto end;
        } else {
            /* a is the inverse of b */
            BN_zero(r->Z);
            r->Z_is_one = 0;
            ret = 1;
            goto end;
        }
    }

    /* 'n7', 'n8' */
    if (!BN_mod_add_quick(n1, n1, n3, p))
        goto end;
    if (!BN_mod_add_quick(n2, n2, n4, p))
        goto end;
    /* 'n7' = n1 + n3 */
    /* 'n8' = n2 + n4 */

    /* Z_r */
    if (a->Z_is_one && b->Z_is_one) {
        if (!BN_copy(r->Z, n5))
            goto end;
    } else {
        if (a->Z_is_one) {
            if (!BN_copy(n0, b->Z))
                goto end;
        } else if (b->Z_is_one) {
            if (!BN_copy(n0, a->Z))
                goto end;
        } else {
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
                goto end;
        }
        if (!field_mul(group, r->Z, n0, n5, ctx))
            goto end;
    }
    r->Z_is_one = 0;
    /* Z_r = Z_a * Z_b * n5 */

    /* X_r */
    if (!field_sqr(group, n0, n6, ctx))
        goto end;
    if (!field_sqr(group, n4, n5, ctx))
        goto end;
    if (!field_mul(group, n3, n1, n4, ctx))
        goto end;
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
        goto end;
    /* X_r = n6^2 - n5^2 * 'n7' */

    /* 'n9' */
    if (!BN_mod_lshift1_quick(n0, r->X, p))
        goto end;
    if (!BN_mod_sub_quick(n0, n3, n0, p))
        goto end;
    /* n9 = n5^2 * 'n7' - 2 * X_r */

    /* Y_r */
    if (!field_mul(group, n0, n0, n6, ctx))
        goto end;
    if (!field_mul(group, n5, n4, n5, ctx))
        goto end;               /* now n5 is n5^3 */
    if (!field_mul(group, n1, n2, n5, ctx))
        goto end;
    if (!BN_mod_sub_quick(n0, n0, n1, p))
        goto end;
    if (BN_is_odd(n0))
        if (!BN_add(n0, n0, p))
            goto end;
    /* now  0 <= n0 < 2*p,  and n0 is even */
    if (!BN_rshift1(r->Y, n0))
        goto end;
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */

    ret = 1;
782 783

 end:
784 785
    if (ctx)                    /* otherwise we already called BN_CTX_end */
        BN_CTX_end(ctx);
R
Rich Salz 已提交
786
    BN_CTX_free(new_ctx);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    return ret;
}

int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, a)) {
        BN_zero(r->Z);
        r->Z_is_one = 0;
        return 1;
    }

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    if (n3 == NULL)
        goto err;

    /*
     * Note that in this function we must not read components of 'a' once we
     * have written the corresponding components of 'r'. ('r' might the same
     * as 'a'.)
     */

    /* n1 */
    if (a->Z_is_one) {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, group->a, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve */
    } else if (group->a_is_minus3) {
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!BN_mod_add_quick(n0, a->X, n1, p))
            goto err;
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
            goto err;
        if (!field_mul(group, n1, n0, n2, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, n1, p))
            goto err;
M
Matt Caswell 已提交
855 856 857 858
        /*-
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
         *    = 3 * X_a^2 - 3 * Z_a^4
         */
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    } else {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!field_sqr(group, n1, n1, ctx))
            goto err;
        if (!field_mul(group, n1, n1, group->a, ctx))
            goto err;
        if (!BN_mod_add_quick(n1, n1, n0, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
    }

    /* Z_r */
    if (a->Z_is_one) {
        if (!BN_copy(n0, a->Y))
            goto err;
    } else {
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
            goto err;
    }
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
        goto err;
    r->Z_is_one = 0;
    /* Z_r = 2 * Y_a * Z_a */

    /* n2 */
    if (!field_sqr(group, n3, a->Y, ctx))
        goto err;
    if (!field_mul(group, n2, a->X, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
        goto err;
    /* n2 = 4 * X_a * Y_a^2 */

    /* X_r */
    if (!BN_mod_lshift1_quick(n0, n2, p))
        goto err;
    if (!field_sqr(group, r->X, n1, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
        goto err;
    /* X_r = n1^2 - 2 * n2 */

    /* n3 */
    if (!field_sqr(group, n0, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
        goto err;
    /* n3 = 8 * Y_a^4 */

    /* Y_r */
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
        goto err;
    if (!field_mul(group, n0, n1, n0, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
        goto err;
    /* Y_r = n1 * (n2 - X_r) - n3 */

    ret = 1;
925 926

 err:
927
    BN_CTX_end(ctx);
R
Rich Salz 已提交
928
    BN_CTX_free(new_ctx);
929 930
    return ret;
}
931

932
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
933 934 935 936
{
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
        /* point is its own inverse */
        return 1;
B
Bodo Möller 已提交
937

938 939
    return BN_usub(point->Y, group->field, point->Y);
}
B
Bodo Möller 已提交
940

941
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
{
    return BN_is_zero(point->Z);
}

int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                              BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *rh, *tmp, *Z4, *Z6;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, point))
        return 1;

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    rh = BN_CTX_get(ctx);
    tmp = BN_CTX_get(ctx);
    Z4 = BN_CTX_get(ctx);
    Z6 = BN_CTX_get(ctx);
    if (Z6 == NULL)
        goto err;

M
Matt Caswell 已提交
978 979 980 981 982 983 984 985 986
    /*-
     * We have a curve defined by a Weierstrass equation
     *      y^2 = x^3 + a*x + b.
     * The point to consider is given in Jacobian projective coordinates
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
     * Substituting this and multiplying by  Z^6  transforms the above equation into
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
     * To test this, we add up the right-hand side in 'rh'.
     */
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

    /* rh := X^2 */
    if (!field_sqr(group, rh, point->X, ctx))
        goto err;

    if (!point->Z_is_one) {
        if (!field_sqr(group, tmp, point->Z, ctx))
            goto err;
        if (!field_sqr(group, Z4, tmp, ctx))
            goto err;
        if (!field_mul(group, Z6, Z4, tmp, ctx))
            goto err;

        /* rh := (rh + a*Z^4)*X */
        if (group->a_is_minus3) {
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
                goto err;
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
                goto err;
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        } else {
            if (!field_mul(group, tmp, Z4, group->a, ctx))
                goto err;
            if (!BN_mod_add_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        }

        /* rh := rh + b*Z^6 */
        if (!field_mul(group, tmp, group->b, Z6, ctx))
            goto err;
        if (!BN_mod_add_quick(rh, rh, tmp, p))
            goto err;
    } else {
        /* point->Z_is_one */

        /* rh := (rh + a)*X */
        if (!BN_mod_add_quick(rh, rh, group->a, p))
            goto err;
        if (!field_mul(group, rh, rh, point->X, ctx))
            goto err;
        /* rh := rh + b */
        if (!BN_mod_add_quick(rh, rh, group->b, p))
            goto err;
    }

    /* 'lh' := Y^2 */
    if (!field_sqr(group, tmp, point->Y, ctx))
        goto err;

    ret = (0 == BN_ucmp(tmp, rh));
B
Bodo Möller 已提交
1042 1043

 err:
1044
    BN_CTX_end(ctx);
R
Rich Salz 已提交
1045
    BN_CTX_free(new_ctx);
1046 1047 1048 1049 1050 1051
    return ret;
}

int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx)
{
M
Matt Caswell 已提交
1052 1053 1054 1055 1056 1057
    /*-
     * return values:
     *  -1   error
     *   0   equal (in affine coordinates)
     *   1   not equal
     */
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
    const BIGNUM *tmp1_, *tmp2_;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, a)) {
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
    }

    if (EC_POINT_is_at_infinity(group, b))
        return 1;

    if (a->Z_is_one && b->Z_is_one) {
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
    }

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    tmp1 = BN_CTX_get(ctx);
    tmp2 = BN_CTX_get(ctx);
    Za23 = BN_CTX_get(ctx);
    Zb23 = BN_CTX_get(ctx);
    if (Zb23 == NULL)
        goto end;

M
Matt Caswell 已提交
1095 1096 1097 1098 1099 1100
    /*-
     * We have to decide whether
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
     * or equivalently, whether
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
     */
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    if (!b->Z_is_one) {
        if (!field_sqr(group, Zb23, b->Z, ctx))
            goto end;
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
            goto end;
        tmp1_ = tmp1;
    } else
        tmp1_ = a->X;
    if (!a->Z_is_one) {
        if (!field_sqr(group, Za23, a->Z, ctx))
            goto end;
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
            goto end;
        tmp2_ = tmp2;
    } else
        tmp2_ = b->X;

    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
    if (BN_cmp(tmp1_, tmp2_) != 0) {
        ret = 1;                /* points differ */
        goto end;
    }

    if (!b->Z_is_one) {
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
            goto end;
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
            goto end;
        /* tmp1_ = tmp1 */
    } else
        tmp1_ = a->Y;
    if (!a->Z_is_one) {
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
            goto end;
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
            goto end;
        /* tmp2_ = tmp2 */
    } else
        tmp2_ = b->Y;

    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
    if (BN_cmp(tmp1_, tmp2_) != 0) {
        ret = 1;                /* points differ */
        goto end;
    }

    /* points are equal */
    ret = 0;
1150 1151

 end:
1152
    BN_CTX_end(ctx);
R
Rich Salz 已提交
1153
    BN_CTX_free(new_ctx);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    return ret;
}

int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
                              BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x, *y;
    int ret = 0;

    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx))
        goto err;
    if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
        goto err;
    if (!point->Z_is_one) {
        ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
        goto err;
    }

    ret = 1;
B
Bodo Möller 已提交
1189

1190
 err:
1191
    BN_CTX_end(ctx);
R
Rich Salz 已提交
1192
    BN_CTX_free(new_ctx);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    return ret;
}

int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                     EC_POINT *points[], BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp, *tmp_Z;
    BIGNUM **prod_Z = NULL;
    size_t i;
    int ret = 0;

    if (num == 0)
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    tmp = BN_CTX_get(ctx);
    tmp_Z = BN_CTX_get(ctx);
1217
    if (tmp_Z == NULL)
1218 1219
        goto err;

R
Rich Salz 已提交
1220
    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    if (prod_Z == NULL)
        goto err;
    for (i = 0; i < num; i++) {
        prod_Z[i] = BN_new();
        if (prod_Z[i] == NULL)
            goto err;
    }

    /*
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
     * skipping any zero-valued inputs (pretend that they're 1).
     */

    if (!BN_is_zero(points[0]->Z)) {
        if (!BN_copy(prod_Z[0], points[0]->Z))
            goto err;
    } else {
        if (group->meth->field_set_to_one != 0) {
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
                goto err;
        } else {
            if (!BN_one(prod_Z[0]))
                goto err;
        }
    }

    for (i = 1; i < num; i++) {
        if (!BN_is_zero(points[i]->Z)) {
            if (!group->
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
                                ctx))
                goto err;
        } else {
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
                goto err;
        }
    }

    /*
     * Now use a single explicit inversion to replace every non-zero
     * points[i]->Z by its inverse.
     */

    if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) {
        ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
        goto err;
    }
    if (group->meth->field_encode != 0) {
        /*
         * In the Montgomery case, we just turned R*H (representing H) into
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
         * multiply by the Montgomery factor twice.
         */
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
            goto err;
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
            goto err;
    }

    for (i = num - 1; i > 0; --i) {
        /*
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
         * .. points[i]->Z (zero-valued inputs skipped).
         */
        if (!BN_is_zero(points[i]->Z)) {
            /*
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
             * inverses 0 .. i, Z values 0 .. i - 1).
             */
            if (!group->
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
                goto err;
            /*
             * Update tmp to satisfy the loop invariant for i - 1.
             */
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
                goto err;
            /* Replace points[i]->Z by its inverse. */
            if (!BN_copy(points[i]->Z, tmp_Z))
                goto err;
        }
    }

    if (!BN_is_zero(points[0]->Z)) {
        /* Replace points[0]->Z by its inverse. */
        if (!BN_copy(points[0]->Z, tmp))
            goto err;
    }

    /* Finally, fix up the X and Y coordinates for all points. */

    for (i = 0; i < num; i++) {
        EC_POINT *p = points[i];

        if (!BN_is_zero(p->Z)) {
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */

            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
                goto err;
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
                goto err;

            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
                goto err;
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
                goto err;

            if (group->meth->field_set_to_one != 0) {
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
                    goto err;
            } else {
                if (!BN_one(p->Z))
                    goto err;
            }
            p->Z_is_one = 1;
        }
    }

    ret = 1;
1340

1341
 err:
1342
    BN_CTX_end(ctx);
R
Rich Salz 已提交
1343
    BN_CTX_free(new_ctx);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    if (prod_Z != NULL) {
        for (i = 0; i < num; i++) {
            if (prod_Z[i] == NULL)
                break;
            BN_clear_free(prod_Z[i]);
        }
        OPENSSL_free(prod_Z);
    }
    return ret;
}

int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
                            const BIGNUM *b, BN_CTX *ctx)
{
    return BN_mod_mul(r, a, b, group->field, ctx);
}

int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
                            BN_CTX *ctx)
{
    return BN_mod_sqr(r, a, group->field, ctx);
}