rand_vms.c 15.3 KB
Newer Older
1
/*
M
Matt Caswell 已提交
2
 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
R
Rich Salz 已提交
4 5 6 7
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
8 9
 */

R
Rich Salz 已提交
10
#include "e_os.h"
11

12
#if defined(OPENSSL_SYS_VMS)
13
# define __NEW_STARLET 1         /* New starlet definitions since VMS 7.0 */
14
# include <unistd.h>
15
# include "internal/cryptlib.h"
R
Rich Salz 已提交
16
# include <openssl/rand.h>
17
# include "internal/rand_int.h"
R
Rich Salz 已提交
18
# include "rand_lcl.h"
19
# include <descrip.h>
20
# include <dvidef.h>
21
# include <jpidef.h>
22 23
# include <rmidef.h>
# include <syidef.h>
24 25
# include <ssdef.h>
# include <starlet.h>
26 27 28 29 30
# include <efndef.h>
# include <gen64def.h>
# include <iosbdef.h>
# include <iledef.h>
# include <lib$routines.h>
31 32 33
# ifdef __DECC
#  pragma message disable DOLLARID
# endif
34

R
Rich Salz 已提交
35 36 37 38
# ifndef OPENSSL_RAND_SEED_OS
#  error "Unsupported seeding method configured; must be os"
# endif

39
/* We need to make sure we have the right size pointer in some cases */
40 41 42
# if __INITIAL_POINTER_SIZE == 64
#  pragma pointer_size save
#  pragma pointer_size 32
43 44 45 46
# endif
typedef uint32_t *uint32_t__ptr32;
# if __INITIAL_POINTER_SIZE == 64
#  pragma pointer_size restore
R
Rich Salz 已提交
47
# endif
48

49
struct item_st {
50
    short length, code;         /* length is number of bytes */
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

static const struct item_st DVI_item_data[] = {
    {4,   DVI$_ERRCNT},
    {4,   DVI$_REFCNT},
};

static const struct item_st JPI_item_data[] = {
    {4,   JPI$_BUFIO},
    {4,   JPI$_CPUTIM},
    {4,   JPI$_DIRIO},
    {4,   JPI$_IMAGECOUNT},
    {4,   JPI$_PAGEFLTS},
    {4,   JPI$_PID},
    {4,   JPI$_PPGCNT},
    {4,   JPI$_WSPEAK},
67 68 69 70 71
    /*
     * Note: the direct result is just a 32-bit address.  However, it points
     * to a list of 4 32-bit words, so we make extra space for them so we can
     * do in-place replacement of values
     */
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    {16,  JPI$_FINALEXC},
};

static const struct item_st JPI_item_data_64bit[] = {
    {8,   JPI$_LAST_LOGIN_I},
    {8,   JPI$_LOGINTIM},
};

static const struct item_st RMI_item_data[] = {
    {4,   RMI$_COLPG},
    {4,   RMI$_MWAIT},
    {4,   RMI$_CEF},
    {4,   RMI$_PFW},
    {4,   RMI$_LEF},
    {4,   RMI$_LEFO},
    {4,   RMI$_HIB},
    {4,   RMI$_HIBO},
    {4,   RMI$_SUSP},
    {4,   RMI$_SUSPO},
    {4,   RMI$_FPG},
    {4,   RMI$_COM},
    {4,   RMI$_COMO},
    {4,   RMI$_CUR},
#if defined __alpha
    {4,   RMI$_FRLIST},
    {4,   RMI$_MODLIST},
#endif
    {4,   RMI$_FAULTS},
    {4,   RMI$_PREADS},
    {4,   RMI$_PWRITES},
    {4,   RMI$_PWRITIO},
    {4,   RMI$_PREADIO},
    {4,   RMI$_GVALFLTS},
    {4,   RMI$_WRTINPROG},
    {4,   RMI$_FREFLTS},
    {4,   RMI$_DZROFLTS},
    {4,   RMI$_SYSFAULTS},
    {4,   RMI$_ISWPCNT},
    {4,   RMI$_DIRIO},
    {4,   RMI$_BUFIO},
    {4,   RMI$_MBREADS},
    {4,   RMI$_MBWRITES},
    {4,   RMI$_LOGNAM},
    {4,   RMI$_FCPCALLS},
    {4,   RMI$_FCPREAD},
    {4,   RMI$_FCPWRITE},
    {4,   RMI$_FCPCACHE},
    {4,   RMI$_FCPCPU},
    {4,   RMI$_FCPHIT},
    {4,   RMI$_FCPSPLIT},
    {4,   RMI$_FCPFAULT},
    {4,   RMI$_ENQNEW},
    {4,   RMI$_ENQCVT},
    {4,   RMI$_DEQ},
    {4,   RMI$_BLKAST},
    {4,   RMI$_ENQWAIT},
    {4,   RMI$_ENQNOTQD},
    {4,   RMI$_DLCKSRCH},
    {4,   RMI$_DLCKFND},
    {4,   RMI$_NUMLOCKS},
    {4,   RMI$_NUMRES},
    {4,   RMI$_ARRLOCPK},
    {4,   RMI$_DEPLOCPK},
    {4,   RMI$_ARRTRAPK},
    {4,   RMI$_TRCNGLOS},
    {4,   RMI$_RCVBUFFL},
    {4,   RMI$_ENQNEWLOC},
    {4,   RMI$_ENQNEWIN},
    {4,   RMI$_ENQNEWOUT},
    {4,   RMI$_ENQCVTLOC},
    {4,   RMI$_ENQCVTIN},
    {4,   RMI$_ENQCVTOUT},
    {4,   RMI$_DEQLOC},
    {4,   RMI$_DEQIN},
    {4,   RMI$_DEQOUT},
    {4,   RMI$_BLKLOC},
    {4,   RMI$_BLKIN},
    {4,   RMI$_BLKOUT},
    {4,   RMI$_DIRIN},
    {4,   RMI$_DIROUT},
    /* We currently get a fault when trying these.  TODO: To be figured out. */
#if 0
    {140, RMI$_MSCP_EVERYTHING},   /* 35 32-bit words */
    {152, RMI$_DDTM_ALL},          /* 38 32-bit words */
    {80,  RMI$_TMSCP_EVERYTHING}   /* 20 32-bit words */
#endif
    {4,   RMI$_LPZ_PAGCNT},
    {4,   RMI$_LPZ_HITS},
    {4,   RMI$_LPZ_MISSES},
    {4,   RMI$_LPZ_EXPCNT},
    {4,   RMI$_LPZ_ALLOCF},
    {4,   RMI$_LPZ_ALLOC2},
    {4,   RMI$_ACCESS},
    {4,   RMI$_ALLOC},
    {4,   RMI$_FCPCREATE},
    {4,   RMI$_VOLWAIT},
    {4,   RMI$_FCPTURN},
    {4,   RMI$_FCPERASE},
    {4,   RMI$_OPENS},
    {4,   RMI$_FIDHIT},
    {4,   RMI$_FIDMISS},
    {4,   RMI$_FILHDR_HIT},
    {4,   RMI$_DIRFCB_HIT},
    {4,   RMI$_DIRFCB_MISS},
    {4,   RMI$_DIRDATA_HIT},
    {4,   RMI$_EXTHIT},
    {4,   RMI$_EXTMISS},
    {4,   RMI$_QUOHIT},
    {4,   RMI$_QUOMISS},
    {4,   RMI$_STORAGMAP_HIT},
    {4,   RMI$_VOLLCK},
    {4,   RMI$_SYNCHLCK},
    {4,   RMI$_SYNCHWAIT},
    {4,   RMI$_ACCLCK},
    {4,   RMI$_XQPCACHEWAIT},
    {4,   RMI$_DIRDATA_MISS},
    {4,   RMI$_FILHDR_MISS},
    {4,   RMI$_STORAGMAP_MISS},
    {4,   RMI$_PROCCNTMAX},
    {4,   RMI$_PROCBATCNT},
    {4,   RMI$_PROCINTCNT},
    {4,   RMI$_PROCNETCNT},
    {4,   RMI$_PROCSWITCHCNT},
    {4,   RMI$_PROCBALSETCNT},
    {4,   RMI$_PROCLOADCNT},
    {4,   RMI$_BADFLTS},
    {4,   RMI$_EXEFAULTS},
    {4,   RMI$_HDRINSWAPS},
    {4,   RMI$_HDROUTSWAPS},
    {4,   RMI$_IOPAGCNT},
    {4,   RMI$_ISWPCNTPG},
    {4,   RMI$_OSWPCNT},
    {4,   RMI$_OSWPCNTPG},
    {4,   RMI$_RDFAULTS},
    {4,   RMI$_TRANSFLTS},
    {4,   RMI$_WRTFAULTS},
#if defined __alpha
    {4,   RMI$_USERPAGES},
#endif
    {4,   RMI$_VMSPAGES},
    {4,   RMI$_TTWRITES},
    {4,   RMI$_BUFOBJPAG},
    {4,   RMI$_BUFOBJPAGPEAK},
    {4,   RMI$_BUFOBJPAGS01},
    {4,   RMI$_BUFOBJPAGS2},
    {4,   RMI$_BUFOBJPAGMAXS01},
    {4,   RMI$_BUFOBJPAGMAXS2},
    {4,   RMI$_BUFOBJPAGPEAKS01},
    {4,   RMI$_BUFOBJPAGPEAKS2},
    {4,   RMI$_BUFOBJPGLTMAXS01},
    {4,   RMI$_BUFOBJPGLTMAXS2},
    {4,   RMI$_DLCK_INCMPLT},
    {4,   RMI$_DLCKMSGS_IN},
    {4,   RMI$_DLCKMSGS_OUT},
    {4,   RMI$_MCHKERRS},
    {4,   RMI$_MEMERRS},
};

static const struct item_st RMI_item_data_64bit[] = {
#if defined __ia64
    {8,   RMI$_FRLIST},
    {8,   RMI$_MODLIST},
#endif
    {8,   RMI$_LCKMGR_REQCNT},
    {8,   RMI$_LCKMGR_REQTIME},
    {8,   RMI$_LCKMGR_SPINCNT},
    {8,   RMI$_LCKMGR_SPINTIME},
    {8,   RMI$_CPUINTSTK},
    {8,   RMI$_CPUMPSYNCH},
    {8,   RMI$_CPUKERNEL},
    {8,   RMI$_CPUEXEC},
    {8,   RMI$_CPUSUPER},
    {8,   RMI$_CPUUSER},
#if defined __ia64
    {8,   RMI$_USERPAGES},
#endif
    {8,   RMI$_TQETOTAL},
    {8,   RMI$_TQESYSUB},
    {8,   RMI$_TQEUSRTIMR},
    {8,   RMI$_TQEUSRWAKE},
};

static const struct item_st SYI_item_data[] = {
    {4,   SYI$_PAGEFILE_FREE},
256
};
257

258 259 260
/*
 * Input:
 * items_data           - an array of lengths and codes
261
 * items_data_num       - number of elements in that array
262 263 264
 *
 * Output:
 * items                - pre-allocated ILE3 array to be filled.
265 266
 *                        It's assumed to have items_data_num elements plus
 *                        one extra for the terminating NULL element
267 268
 * databuffer           - pre-allocated 32-bit word array.
 *
269
 * Returns the number of elements used in databuffer
270 271 272 273 274 275 276 277
 */
static size_t prepare_item_list(const struct item_st *items_input,
                                size_t items_input_num,
                                ILE3 *items,
                                uint32_t__ptr32 databuffer)
{
    size_t data_sz = 0;

278
    for (; items_input_num-- > 0; items_input++, items++) {
279

280
        items->ile3$w_code = items_input->code;
281
        /* Special treatment of JPI$_FINALEXC */
282 283
        if (items->ile3$w_code == JPI$_FINALEXC)
            items->ile3$w_length = 4;
284
        else
285
            items->ile3$w_length = items_input->length;
286

287 288
        items->ile3$ps_bufaddr = databuffer;
        items->ile3$ps_retlen_addr = 0;
289

290 291
        databuffer += items_input->length / sizeof(databuffer[0]);
        data_sz += items_input->length;
292 293
    }
    /* Terminating NULL entry */
294 295
    items->ile3$w_length = items->ile3$w_code = 0;
    items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;
296

297
    return data_sz / sizeof(databuffer[0]);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
}

static void massage_JPI(ILE3 *items)
{
    /*
     * Special treatment of JPI$_FINALEXC
     * The result of that item's data buffer is a 32-bit address to a list of
     * 4 32-bit words.
     */
    for (; items->ile3$w_length != 0; items++) {
        if (items->ile3$w_code == JPI$_FINALEXC) {
            uint32_t *data = items->ile3$ps_bufaddr;
            uint32_t *ptr = (uint32_t *)*data;
            size_t j;

            /*
             * We know we made space for 4 32-bit words, so we can do in-place
             * replacement.
             */
            for (j = 0; j < 4; j++)
                data[j] = ptr[j];

            break;
        }
    }
}

325
/*
326 327
 * This number expresses how many bits of data contain 1 bit of entropy.
 *
328 329
 * For the moment, we assume about 0.05 entropy bits per data bit, or 1
 * bit of entropy per 20 data bits.
330
 */
331
#define ENTROPY_FACTOR  20
332

333
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
334
{
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
    ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
    ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
    ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
    ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
    ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
    union {
        /* This ensures buffer starts at 64 bit boundary */
        uint64_t dummy;
        uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
                        + OSSL_NELEM(RMI_item_data_64bit) * 2
                        + OSSL_NELEM(DVI_item_data)
                        + OSSL_NELEM(JPI_item_data)
                        + OSSL_NELEM(RMI_item_data)
                        + OSSL_NELEM(SYI_item_data)
                        + 4 /* For JPI$_FINALEXC */];
    } data;
    size_t total_elems = 0;
353
    size_t total_length = 0;
354
    size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
355
    size_t bytes_remaining = rand_pool_bytes_remaining(pool);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    /* Take all the 64-bit items first, to ensure proper alignment of data */
    total_elems +=
        prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
                          JPI_items_64bit, &data.buffer[total_elems]);
    total_elems +=
        prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
                          RMI_items_64bit, &data.buffer[total_elems]);
    /* Now the 32-bit items */
    total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
                                     DVI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
                                     JPI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
                                     RMI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
                                     SYI_items, &data.buffer[total_elems]);
    total_length = total_elems * sizeof(data.buffer[0]);
374

375
    /* Fill data.buffer with various info bits from this process */
376 377
    {
        uint32_t status;
378 379 380
        uint32_t efn;
        IOSB iosb;
        $DESCRIPTOR(SYSDEVICE,"SYS$SYSDEVICE:");
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
                                  0, 0, 0, 0, 0)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
398 399 400
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
401
        }
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        /*
         * The RMI service is a bit special, as there is no synchronous
         * variant, so we MUST create an event flag to synchronise on.
         */
        if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
            lib$signal(iosb.iosb$l_getxxi_status);
            return 0;
        }
        if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
            lib$signal(iosb.iosb$l_getxxi_status);
            return 0;
        }
        if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
440
    }
441

442
    massage_JPI(JPI_items);
443

444
    /*
445
     * If we can't feed the requirements from the caller, we're in deep trouble.
446
     */
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    if (!ossl_assert(total_length >= bytes_needed)) {
        char neededstr[20];
        char availablestr[20];

        BIO_snprintf(neededstr, sizeof(neededstr), "%zu", bytes_needed);
        BIO_snprintf(availablestr, sizeof(availablestr), "%zu", total_length);
        RANDerr(RAND_F_RAND_POOL_ACQUIRE_ENTROPY,
                RAND_R_RANDOM_POOL_UNDERFLOW);
        ERR_add_error_data(4, "Needed: ", neededstr, ", Available: ",
                           availablestr);
        return 0;
    }

    /*
     * Try not to overfeed the pool
     */
    if (total_length > bytes_remaining)
        total_length = bytes_remaining;

466
    /* We give the pessimistic value for the amount of entropy */
467 468
    rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
                  8 * total_length / ENTROPY_FACTOR);
469
    return rand_pool_entropy_available(pool);
470 471
}

472 473 474 475 476 477 478 479 480
int rand_pool_add_nonce_data(RAND_POOL *pool)
{
    struct {
        pid_t pid;
        CRYPTO_THREAD_ID tid;
        uint64_t time;
    } data = { 0 };

    /*
481 482 483 484
     * Add process id, thread id, and a high resolution timestamp
     * (where available, which is OpenVMS v8.4 and up) to ensure that
     * the nonce is unique whith high probability for different process
     * instances.
485 486 487
     */
    data.pid = getpid();
    data.tid = CRYPTO_THREAD_get_current_id();
488
#if __CRTL_VER >= 80400000
489
    sys$gettim_prec(&data.time);
490 491 492
#else
    sys$gettim((void*)&data.time);
#endif
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}

int rand_pool_add_additional_data(RAND_POOL *pool)
{
    struct {
        CRYPTO_THREAD_ID tid;
        uint64_t time;
    } data = { 0 };

    /*
     * Add some noise from the thread id and a high resolution timer.
     * The thread id adds a little randomness if the drbg is accessed
     * concurrently (which is the case for the <master> drbg).
     */
    data.tid = CRYPTO_THREAD_get_current_id();
510
    sys$gettim_prec(&data.time);
511 512 513 514

    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}

515 516 517 518 519 520 521 522 523 524 525 526 527
int rand_pool_init(void)
{
    return 1;
}

void rand_pool_cleanup(void)
{
}

void rand_pool_keep_random_devices_open(int keep)
{
}

528
#endif