bn_prime.c 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/* crypto/bn/bn_prime.c */
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
#include <time.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#include "rand.h"

/* The quick seive algorithm approach to weeding out primes is
 * Philip Zimmermann's, as implemented in PGP.  I have had a read of
 * his comments and implemented my own version.
 */
#include "bn_prime.h"

#ifndef NOPROTO
static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx);
static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits,
	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
static int probable_prime_dh_strong(BIGNUM *rnd, int bits,
	BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
#else
static int witness();
static int probable_prime();
static int probable_prime_dh();
static int probable_prime_dh_strong();
#endif

BIGNUM *BN_generate_prime(bits,strong,add,rem,callback)
int bits;
int strong;
BIGNUM *add;
BIGNUM *rem;
void (*callback)(P_I_I); 
	{
	BIGNUM *rnd=NULL;
	BIGNUM *ret=NULL;
	BIGNUM *t=NULL;
	int i,j,c1=0;
	BN_CTX *ctx;

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	if ((rnd=BN_new()) == NULL) goto err;
	if (strong)
		if ((t=BN_new()) == NULL) goto err;
loop: 
	/* make a random number and set the top and bottom bits */
	if (add == NULL)
		{
		if (!probable_prime(rnd,bits)) goto err;
		}
	else
		{
		if (strong)
			{
			if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx))
				 goto err;
			}
		else
			{
			if (!probable_prime_dh(rnd,bits,add,rem,ctx))
				goto err;
			}
		}
	/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
	if (callback != NULL) callback(0,c1++);

	if (!strong)
		{
		i=BN_is_prime(rnd,BN_prime_checks,callback,ctx);
		if (i == -1) goto err;
		if (i == 0) goto loop;
		}
	else
		{
		/* for a strong prime generation,
		 * check that (p-1)/2 is prime.
		 * Since a prime is odd, We just
		 * need to divide by 2 */
		if (!BN_rshift1(t,rnd)) goto err;

		for (i=0; i<BN_prime_checks; i++)
			{
			j=BN_is_prime(rnd,1,callback,ctx);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			j=BN_is_prime(t,1,callback,ctx);
			if (j == -1) goto err;
			if (j == 0) goto loop;

			if (callback != NULL) callback(2,c1-1);
			/* We have a strong prime test pass */
			}
		}
	/* we have a prime :-) */
	ret=rnd;
err:
	if ((ret == NULL) && (rnd != NULL)) BN_free(rnd);
	if (t != NULL) BN_free(t);
	if (ctx != NULL) BN_CTX_free(ctx);
	return(ret);
	}

int BN_is_prime(a,checks,callback,ctx_passed)
BIGNUM *a;
int checks;
void (*callback)(P_I_I);
BN_CTX *ctx_passed;
	{
	int i,j,c2=0,ret= -1;
	BIGNUM *check;
	BN_CTX *ctx;

	if (ctx_passed != NULL)
		ctx=ctx_passed;
	else
		if ((ctx=BN_CTX_new()) == NULL) goto err;

	check=ctx->bn[ctx->tos++];
	for (i=0; i<checks; i++)
		{
		if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err;
		j=witness(check,a,ctx);
		if (j == -1) goto err;
		if (j)
			{
			ret=0;
			goto err;
			}
		if (callback != NULL) callback(1,c2++);
		}
	ret=1;
err:
	ctx->tos--;
	if ((ctx_passed == NULL) && (ctx != NULL))
		BN_CTX_free(ctx);
		
	return(ret);
	}

#define RECP_MUL_MOD

static int witness(a, n,ctx)
BIGNUM *a;
BIGNUM *n;
BN_CTX *ctx;
	{
	int k,i,nb,ret= -1;
	BIGNUM *d,*dd,*tmp;
	BIGNUM *d1,*d2,*x,*n1,*inv;

	d1=ctx->bn[ctx->tos];
	d2=ctx->bn[ctx->tos+1];
	x=ctx->bn[ctx->tos+2];
	n1=ctx->bn[ctx->tos+3];
	inv=ctx->bn[ctx->tos+4];
	ctx->tos+=5;

	d=d1;
	dd=d2;
	if (!BN_one(d)) goto err;
	if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
	k=BN_num_bits(n1);

	/* i=BN_num_bits(n); */
#ifdef RECP_MUL_MOD
	nb=BN_reciprocal(inv,n,ctx); /**/
	if (nb == -1) goto err;
#endif

	for (i=k-1; i>=0; i--)
		{
		if (BN_copy(x,d) == NULL) goto err;
#ifndef RECP_MUL_MOD
		if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;
#else
		if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;
#endif
		if (	BN_is_one(dd) &&
			!BN_is_one(x) &&
			(BN_cmp(x,n1) != 0))
			{
			ret=1;
			goto err;
			}
		if (BN_is_bit_set(n1,i))
			{
#ifndef RECP_MUL_MOD
			if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;
#else
			if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; 
#endif
			}
		else
			{
			tmp=d;
			d=dd;
			dd=tmp;
			}
		}
	if (BN_is_one(d))
		i=0;
	else	i=1;
	ret=i;
err:
	ctx->tos-=5;
	return(ret);
	}

static int probable_prime(rnd, bits)
BIGNUM *rnd;
int bits;
	{
	int i;
	MS_STATIC BN_ULONG mods[NUMPRIMES];
	BN_ULONG delta;

	if (!BN_rand(rnd,bits,1,1)) return(0);
	/* we now have a random number 'rand' to test. */
	for (i=1; i<NUMPRIMES; i++)
		mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
	delta=0;
	loop: for (i=1; i<NUMPRIMES; i++)
		{
		/* check that rnd is not a prime and also
		 * that gcd(rnd-1,primes) == 1 (except for 2) */
		if (((mods[i]+delta)%primes[i]) <= 1)
			{
			delta+=2;
			/* perhaps need to check for overflow of
			 * delta (but delta can be upto 2^32) */
			goto loop;
			}
		}
	if (!BN_add_word(rnd,delta)) return(0);
	return(1);
	}

static int probable_prime_dh(rnd, bits, add, rem,ctx)
BIGNUM *rnd;
int bits;
BIGNUM *add;
BIGNUM *rem;
BN_CTX *ctx;
	{
	int i,ret=0;
	BIGNUM *t1;

	t1=ctx->bn[ctx->tos++];

	if (!BN_rand(rnd,bits,0,1)) goto err;

	/* we need ((rnd-rem) % add) == 0 */

	if (!BN_mod(t1,rnd,add,ctx)) goto err;
	if (!BN_sub(rnd,rnd,t1)) goto err;
	if (rem == NULL)
		{ if (!BN_add_word(rnd,1)) goto err; }
	else
		{ if (!BN_add(rnd,rnd,rem)) goto err; }

	/* we now have a random number 'rand' to test. */

	loop: for (i=1; i<NUMPRIMES; i++)
		{
		/* check that rnd is a prime */
		if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1)
			{
			if (!BN_add(rnd,rnd,add)) goto err;
			goto loop;
			}
		}
	ret=1;
err:
	ctx->tos--;
	return(ret);
	}

static int probable_prime_dh_strong(p, bits, padd, rem,ctx)
BIGNUM *p;
int bits;
BIGNUM *padd;
BIGNUM *rem;
BN_CTX *ctx;
	{
	int i,ret=0;
	BIGNUM *t1,*qadd=NULL,*q=NULL;

	bits--;
	t1=ctx->bn[ctx->tos++];
	q=ctx->bn[ctx->tos++];
	qadd=ctx->bn[ctx->tos++];

	if (!BN_rshift1(qadd,padd)) goto err;
		
	if (!BN_rand(q,bits,0,1)) goto err;

	/* we need ((rnd-rem) % add) == 0 */
	if (!BN_mod(t1,q,qadd,ctx)) goto err;
	if (!BN_sub(q,q,t1)) goto err;
	if (rem == NULL)
		{ if (!BN_add_word(q,1)) goto err; }
	else
		{
		if (!BN_rshift1(t1,rem)) goto err;
		if (!BN_add(q,q,t1)) goto err;
		}

	/* we now have a random number 'rand' to test. */
	if (!BN_lshift1(p,q)) goto err;
	if (!BN_add_word(p,1)) goto err;

	loop: for (i=1; i<NUMPRIMES; i++)
		{
		/* check that p and q are prime */
		/* check that for p and q
		 * gcd(p-1,primes) == 1 (except for 2) */
		if (	(BN_mod_word(p,(BN_LONG)primes[i]) == 0) ||
			(BN_mod_word(q,(BN_LONG)primes[i]) == 0))
			{
			if (!BN_add(p,p,padd)) goto err;
			if (!BN_add(q,q,qadd)) goto err;
			goto loop;
			}
		}
	ret=1;
err:
	ctx->tos-=3;
	return(ret);
	}