bn_local.h 25.3 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#ifndef OSSL_CRYPTO_BN_LOCAL_H
# define OSSL_CRYPTO_BN_LOCAL_H

/*
 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
 * Configure script and needs to support both 32-bit and 64-bit.
 */
# include <openssl/opensslconf.h>

# if !defined(OPENSSL_SYS_UEFI)
#  include "crypto/bn_conf.h"
# endif

# include "crypto/bn.h"
# include "internal/cryptlib.h"
# include "internal/numbers.h"

/*
 * These preprocessor symbols control various aspects of the bignum headers
 * and library code. They're not defined by any "normal" configuration, as
 * they are intended for development and testing purposes. NB: defining
 * them can be useful for debugging application code as well as openssl
 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
 * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
 * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
 * break some of the OpenSSL tests.
 */
# if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
#  define BN_DEBUG
# endif
# if defined(BN_RAND_DEBUG)
#  include <openssl/rand.h>
# endif

# ifndef OPENSSL_SMALL_FOOTPRINT
#  define BN_MUL_COMBA
#  define BN_SQR_COMBA
#  define BN_RECURSION
# endif

/*
 * This next option uses the C libraries (2 word)/(1 word) function. If it is
 * not defined, I use my C version (which is slower). The reason for this
 * flag is that when the particular C compiler library routine is used, and
 * the library is linked with a different compiler, the library is missing.
 * This mostly happens when the library is built with gcc and then linked
 * using normal cc.  This would be a common occurrence because gcc normally
 * produces code that is 2 times faster than system compilers for the big
 * number stuff. For machines with only one compiler (or shared libraries),
 * this should be on.  Again this in only really a problem on machines using
 * "long long's", are 32bit, and are not using my assembler code.
 */
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
    defined(OPENSSL_SYS_WIN32) || defined(linux)
#  define BN_DIV2W
# endif

/*
 * 64-bit processor with LP64 ABI
 */
# ifdef SIXTY_FOUR_BIT_LONG
#  define BN_ULLONG       unsigned long long
#  define BN_BITS4        32
#  define BN_MASK2        (0xffffffffffffffffL)
#  define BN_MASK2l       (0xffffffffL)
#  define BN_MASK2h       (0xffffffff00000000L)
#  define BN_MASK2h1      (0xffffffff80000000L)
#  define BN_DEC_CONV     (10000000000000000000UL)
#  define BN_DEC_NUM      19
#  define BN_DEC_FMT1     "%lu"
#  define BN_DEC_FMT2     "%019lu"
# endif

/*
 * 64-bit processor other than LP64 ABI
 */
# ifdef SIXTY_FOUR_BIT
#  undef BN_LLONG
#  undef BN_ULLONG
#  define BN_BITS4        32
#  define BN_MASK2        (0xffffffffffffffffLL)
#  define BN_MASK2l       (0xffffffffL)
#  define BN_MASK2h       (0xffffffff00000000LL)
#  define BN_MASK2h1      (0xffffffff80000000LL)
#  define BN_DEC_CONV     (10000000000000000000ULL)
#  define BN_DEC_NUM      19
#  define BN_DEC_FMT1     "%llu"
#  define BN_DEC_FMT2     "%019llu"
# endif

# ifdef THIRTY_TWO_BIT
#  ifdef BN_LLONG
#   if defined(_WIN32) && !defined(__GNUC__)
#    define BN_ULLONG     unsigned __int64
#   else
#    define BN_ULLONG     unsigned long long
#   endif
#  endif
#  define BN_BITS4        16
#  define BN_MASK2        (0xffffffffL)
#  define BN_MASK2l       (0xffff)
#  define BN_MASK2h1      (0xffff8000L)
#  define BN_MASK2h       (0xffff0000L)
#  define BN_DEC_CONV     (1000000000L)
#  define BN_DEC_NUM      9
#  define BN_DEC_FMT1     "%u"
#  define BN_DEC_FMT2     "%09u"
# endif


/*-
 * Bignum consistency macros
 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
 * bignum data after direct manipulations on the data. There is also an
 * "internal" macro, bn_check_top(), for verifying that there are no leading
 * zeroes. Unfortunately, some auditing is required due to the fact that
 * bn_fix_top() has become an overabused duct-tape because bignum data is
 * occasionally passed around in an inconsistent state. So the following
 * changes have been made to sort this out;
 * - bn_fix_top()s implementation has been moved to bn_correct_top()
 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
 *   bn_check_top() is as before.
 * - if BN_DEBUG *is* defined;
 *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
 *     consistent. (ed: only if BN_RAND_DEBUG is defined)
 *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
 * The idea is to have debug builds flag up inconsistent bignums when they
 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
 * was not appropriate, we convert it permanently to bn_check_top() and track
 * down the cause of the bug. Eventually, no internal code should be using the
 * bn_fix_top() macro. External applications and libraries should try this with
 * their own code too, both in terms of building against the openssl headers
 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
 * defined. This not only improves external code, it provides more test
 * coverage for openssl's own code.
 */

# ifdef BN_DEBUG
/*
 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
 * bn_correct_top, in other words such vectors are permitted to have zeros
 * in most significant limbs. Such vectors are used internally to achieve
 * execution time invariance for critical operations with private keys.
 * It's BN_DEBUG-only flag, because user application is not supposed to
 * observe it anyway. Moreover, optimizing compiler would actually remove
 * all operations manipulating the bit in question in non-BN_DEBUG build.
 */
#  define BN_FLG_FIXED_TOP 0x10000
#  ifdef BN_RAND_DEBUG
#   define bn_pollute(a) \
        do { \
            const BIGNUM *_bnum1 = (a); \
            if (_bnum1->top < _bnum1->dmax) { \
                unsigned char _tmp_char; \
                /* We cast away const without the compiler knowing, any \
                 * *genuinely* constant variables that aren't mutable \
                 * wouldn't be constructed with top!=dmax. */ \
                BN_ULONG *_not_const; \
                memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
                (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
                memset(_not_const + _bnum1->top, _tmp_char, \
                       sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
            } \
        } while(0)
#  else
#   define bn_pollute(a)
#  endif
#  define bn_check_top(a) \
        do { \
                const BIGNUM *_bnum2 = (a); \
                if (_bnum2 != NULL) { \
                        int _top = _bnum2->top; \
                        (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
                                  (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
                                            || _bnum2->d[_top - 1] != 0))); \
                        bn_pollute(_bnum2); \
                } \
        } while(0)

#  define bn_fix_top(a)           bn_check_top(a)

#  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
#  define bn_wcheck_size(bn, words) \
        do { \
                const BIGNUM *_bnum2 = (bn); \
                assert((words) <= (_bnum2)->dmax && \
                       (words) >= (_bnum2)->top); \
                /* avoid unused variable warning with NDEBUG */ \
                (void)(_bnum2); \
        } while(0)

# else                          /* !BN_DEBUG */

#  define BN_FLG_FIXED_TOP 0
#  define bn_pollute(a)
#  define bn_check_top(a)
#  define bn_fix_top(a)           bn_correct_top(a)
#  define bn_check_size(bn, bits)
#  define bn_wcheck_size(bn, words)

# endif

BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
                          BN_ULONG w);
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
                      int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
                      int num);

struct bignum_st {
    BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit
                                 * chunks. */
    int top;                    /* Index of last used d +1. */
    /* The next are internal book keeping for bn_expand. */
    int dmax;                   /* Size of the d array. */
    int neg;                    /* one if the number is negative */
    int flags;
};

/* Used for montgomery multiplication */
struct bn_mont_ctx_st {
    int ri;                     /* number of bits in R */
    BIGNUM RR;                  /* used to convert to montgomery form,
                                   possibly zero-padded */
    BIGNUM N;                   /* The modulus */
    BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
                                 * stored for bignum algorithm) */
    BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
                                 * changed with 0.9.9, was "BN_ULONG n0;"
                                 * before) */
    int flags;
};

/*
 * Used for reciprocal division/mod functions It cannot be shared between
 * threads
 */
struct bn_recp_ctx_st {
    BIGNUM N;                   /* the divisor */
    BIGNUM Nr;                  /* the reciprocal */
    int num_bits;
    int shift;
    int flags;
};

/* Used for slow "generation" functions. */
struct bn_gencb_st {
    unsigned int ver;           /* To handle binary (in)compatibility */
    void *arg;                  /* callback-specific data */
    union {
        /* if (ver==1) - handles old style callbacks */
        void (*cb_1) (int, int, void *);
        /* if (ver==2) - new callback style */
        int (*cb_2) (int, int, BN_GENCB *);
    } cb;
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
struct bn_blinding_st {
    BIGNUM *A;
    BIGNUM *Ai;
    BIGNUM *e;
    BIGNUM *mod;                /* just a reference */
    CRYPTO_THREAD_ID tid;
    int counter;
    unsigned long flags;
    BN_MONT_CTX *m_ctx;
    int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                       const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
    CRYPTO_RWLOCK *lock;
};

C
code4lala 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/*-
 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
 *
 *
 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
 * the number of multiplications is a constant plus on average
 *
 *    2^(w-1) + (b-w)/(w+1);
 *
 * here  2^(w-1)  is for precomputing the table (we actually need
 * entries only for windows that have the lowest bit set), and
 * (b-w)/(w+1)  is an approximation for the expected number of
 * w-bit windows, not counting the first one.
 *
 * Thus we should use
 *
 *    w >= 6  if        b > 671
 *     w = 5  if  671 > b > 239
 *     w = 4  if  239 > b >  79
 *     w = 3  if   79 > b >  23
 *    w <= 2  if   23 > b
 *
 * (with draws in between).  Very small exponents are often selected
 * with low Hamming weight, so we use  w = 1  for b <= 23.
 */
# define BN_window_bits_for_exponent_size(b) \
                ((b) > 671 ? 6 : \
                 (b) > 239 ? 5 : \
                 (b) >  79 ? 4 : \
                 (b) >  23 ? 3 : 1)

/*
 * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
 * line width of the target processor is at least the following value.
 */
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)

/*
 * Window sizes optimized for fixed window size modular exponentiation
 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
 * defined for cache line sizes of 32 and 64, cache line sizes where
 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
 * used on processors that have a 128 byte or greater cache line size.
 */
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64

#  define BN_window_bits_for_ctime_exponent_size(b) \
                ((b) > 937 ? 6 : \
                 (b) > 306 ? 5 : \
                 (b) >  89 ? 4 : \
                 (b) >  22 ? 3 : 1)
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)

# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32

#  define BN_window_bits_for_ctime_exponent_size(b) \
                ((b) > 306 ? 5 : \
                 (b) >  89 ? 4 : \
                 (b) >  22 ? 3 : 1)
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)

# endif

/* Pentium pro 16,16,16,32,64 */
/* Alpha       16,16,16,16.64 */
# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */

/*
 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
 * size_t was used to perform integer-only operations on pointers.  This
 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
 * is still only 32 bits.  What's needed in these cases is an integer type
 * with the same size as a pointer, which size_t is not certain to be. The
 * only fix here is VMS-specific.
 */
# if defined(OPENSSL_SYS_VMS)
#  if __INITIAL_POINTER_SIZE == 64
#   define PTR_SIZE_INT long long
#  else                         /* __INITIAL_POINTER_SIZE == 64 */
#   define PTR_SIZE_INT int
#  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */
# elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */
#  define PTR_SIZE_INT size_t
# endif                         /* defined(OPENSSL_SYS_VMS) [else] */

# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
/*
 * BN_UMULT_HIGH section.
 * If the compiler doesn't support 2*N integer type, then you have to
 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
 * shifts and additions which unavoidably results in severe performance
 * penalties. Of course provided that the hardware is capable of producing
 * 2*N result... That's when you normally start considering assembler
 * implementation. However! It should be pointed out that some CPUs (e.g.,
 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
 * the upper half of the product placing the result into a general
 * purpose register. Now *if* the compiler supports inline assembler,
 * then it's not impossible to implement the "bignum" routines (and have
 * the compiler optimize 'em) exhibiting "native" performance in C. That's
 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
 * support 2*64 integer type, which is also used here.
 */
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
      (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
#   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)
#   define BN_UMULT_LOHI(low,high,a,b) ({       \
        uint128_t ret=(uint128_t)(a)*(b);   \
        (high)=ret>>64; (low)=ret;      })
#  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
#   if defined(__DECC)
#    include <c_asm.h>
#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
#   elif defined(__GNUC__) && __GNUC__>=2
#    define BN_UMULT_HIGH(a,b)   ({     \
        register BN_ULONG ret;          \
        asm ("umulh     %1,%2,%0"       \
             : "=r"(ret)                \
             : "r"(a), "r"(b));         \
        ret;                      })
#   endif                       /* compiler */
#  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
#   if defined(__GNUC__) && __GNUC__>=2
#    define BN_UMULT_HIGH(a,b)   ({     \
        register BN_ULONG ret;          \
        asm ("mulhdu    %0,%1,%2"       \
             : "=r"(ret)                \
             : "r"(a), "r"(b));         \
        ret;                      })
#   endif                       /* compiler */
#  elif (defined(__x86_64) || defined(__x86_64__)) && \
       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
#   if defined(__GNUC__) && __GNUC__>=2
#    define BN_UMULT_HIGH(a,b)   ({     \
        register BN_ULONG ret,discard;  \
        asm ("mulq      %3"             \
             : "=a"(discard),"=d"(ret)  \
             : "a"(a), "g"(b)           \
             : "cc");                   \
        ret;                      })
#    define BN_UMULT_LOHI(low,high,a,b) \
        asm ("mulq      %3"             \
                : "=a"(low),"=d"(high)  \
                : "a"(a),"g"(b)         \
                : "cc");
#   endif
#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
#   if defined(_MSC_VER) && _MSC_VER>=1400
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
                          unsigned __int64 *h);
#    pragma intrinsic(__umulh,_umul128)
#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
#   endif
#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
#   if defined(__GNUC__) && __GNUC__>=2
#    define BN_UMULT_HIGH(a,b) ({       \
        register BN_ULONG ret;          \
        asm ("dmultu    %1,%2"          \
             : "=h"(ret)                \
             : "r"(a), "r"(b) : "l");   \
        ret;                    })
#    define BN_UMULT_LOHI(low,high,a,b) \
        asm ("dmultu    %2,%3"          \
             : "=l"(low),"=h"(high)     \
             : "r"(a), "r"(b));
#   endif
#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
#   if defined(__GNUC__) && __GNUC__>=2
#    define BN_UMULT_HIGH(a,b)   ({     \
        register BN_ULONG ret;          \
        asm ("umulh     %0,%1,%2"       \
             : "=r"(ret)                \
             : "r"(a), "r"(b));         \
        ret;                      })
#   endif
#  endif                        /* cpu */
# endif                         /* OPENSSL_NO_ASM */

# ifdef BN_RAND_DEBUG
#  define bn_clear_top2max(a) \
        { \
        int      ind = (a)->dmax - (a)->top; \
        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
        for (; ind != 0; ind--) \
                *(++ftl) = 0x0; \
        }
# else
#  define bn_clear_top2max(a)
# endif

# ifdef BN_LLONG
/*******************************************************************
 * Using the long long type, has to be twice as wide as BN_ULONG...
 */
#  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
#  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)

#  define mul_add(r,a,w,c) { \
        BN_ULLONG t; \
        t=(BN_ULLONG)w * (a) + (r) + (c); \
        (r)= Lw(t); \
        (c)= Hw(t); \
        }

#  define mul(r,a,w,c) { \
        BN_ULLONG t; \
        t=(BN_ULLONG)w * (a) + (c); \
        (r)= Lw(t); \
        (c)= Hw(t); \
        }

#  define sqr(r0,r1,a) { \
        BN_ULLONG t; \
        t=(BN_ULLONG)(a)*(a); \
        (r0)=Lw(t); \
        (r1)=Hw(t); \
        }

# elif defined(BN_UMULT_LOHI)
#  define mul_add(r,a,w,c) {              \
        BN_ULONG high,low,ret,tmp=(a);  \
        ret =  (r);                     \
        BN_UMULT_LOHI(low,high,w,tmp);  \
        ret += (c);                     \
        (c) =  (ret<(c))?1:0;           \
        (c) += high;                    \
        ret += low;                     \
        (c) += (ret<low)?1:0;           \
        (r) =  ret;                     \
        }

#  define mul(r,a,w,c)    {               \
        BN_ULONG high,low,ret,ta=(a);   \
        BN_UMULT_LOHI(low,high,w,ta);   \
        ret =  low + (c);               \
        (c) =  high;                    \
        (c) += (ret<low)?1:0;           \
        (r) =  ret;                     \
        }

#  define sqr(r0,r1,a)    {               \
        BN_ULONG tmp=(a);               \
        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
        }

# elif defined(BN_UMULT_HIGH)
#  define mul_add(r,a,w,c) {              \
        BN_ULONG high,low,ret,tmp=(a);  \
        ret =  (r);                     \
        high=  BN_UMULT_HIGH(w,tmp);    \
        ret += (c);                     \
        low =  (w) * tmp;               \
        (c) =  (ret<(c))?1:0;           \
        (c) += high;                    \
        ret += low;                     \
        (c) += (ret<low)?1:0;           \
        (r) =  ret;                     \
        }

#  define mul(r,a,w,c)    {               \
        BN_ULONG high,low,ret,ta=(a);   \
        low =  (w) * ta;                \
        high=  BN_UMULT_HIGH(w,ta);     \
        ret =  low + (c);               \
        (c) =  high;                    \
        (c) += (ret<low)?1:0;           \
        (r) =  ret;                     \
        }

#  define sqr(r0,r1,a)    {               \
        BN_ULONG tmp=(a);               \
        (r0) = tmp * tmp;               \
        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
        }

# else
/*************************************************************
 * No long long type
 */

#  define LBITS(a)        ((a)&BN_MASK2l)
#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)

#  define LLBITS(a)       ((a)&BN_MASKl)
#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)

#  define mul64(l,h,bl,bh) \
        { \
        BN_ULONG m,m1,lt,ht; \
 \
        lt=l; \
        ht=h; \
        m =(bh)*(lt); \
        lt=(bl)*(lt); \
        m1=(bl)*(ht); \
        ht =(bh)*(ht); \
        m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
        ht+=HBITS(m); \
        m1=L2HBITS(m); \
        lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
        (l)=lt; \
        (h)=ht; \
        }

#  define sqr64(lo,ho,in) \
        { \
        BN_ULONG l,h,m; \
 \
        h=(in); \
        l=LBITS(h); \
        h=HBITS(h); \
        m =(l)*(h); \
        l*=l; \
        h*=h; \
        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
        l=(l+m)&BN_MASK2; if (l < m) h++; \
        (lo)=l; \
        (ho)=h; \
        }

#  define mul_add(r,a,bl,bh,c) { \
        BN_ULONG l,h; \
 \
        h= (a); \
        l=LBITS(h); \
        h=HBITS(h); \
        mul64(l,h,(bl),(bh)); \
 \
        /* non-multiply part */ \
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
        (c)=(r); \
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
        (c)=h&BN_MASK2; \
        (r)=l; \
        }

#  define mul(r,a,bl,bh,c) { \
        BN_ULONG l,h; \
 \
        h= (a); \
        l=LBITS(h); \
        h=HBITS(h); \
        mul64(l,h,(bl),(bh)); \
 \
        /* non-multiply part */ \
        l+=(c); if ((l&BN_MASK2) < (c)) h++; \
        (c)=h&BN_MASK2; \
        (r)=l&BN_MASK2; \
        }
# endif                         /* !BN_LLONG */

void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);

void bn_init(BIGNUM *a);
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                      int dna, int dnb, BN_ULONG *t);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
                           int n, int tna, int tnb, BN_ULONG *t);
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                          BN_ULONG *t);
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
                           int cl, int dl);
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
                const BN_ULONG *np, const BN_ULONG *n0, int num);

BIGNUM *int_bn_mod_inverse(BIGNUM *in,
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
                           int *noinv);

static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
{
    if (bits > (INT_MAX - BN_BITS2 + 1))
        return NULL;

    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
        return a;

    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
}

int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
                        int do_trial_division, BN_GENCB *cb);

#endif