ec_mult.c 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* crypto/ec/ec_mult.c */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

56 57
#include <openssl/err.h>

58
#include "ec_lcl.h"
59 60 61 62 63 64 65 66


/* TODO: width-m NAFs */

/* TODO: optional Lim-Lee precomputation for the generator */


#define EC_window_bits_for_scalar_size(b) \
67 68 69 70
		((b) >= 2000 ? 6 : \
		 (b) >=  800 ? 5 : \
		 (b) >=  300 ? 4 : \
		 (b) >=   70 ? 3 : \
B
Bodo Möller 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
		 (b) >=   20 ? 2 : \
		  1)
/* For window size 'w' (w >= 2), we compute the odd multiples
 *      1*P .. (2^w-1)*P.
 * This accounts for  2^(w-1)  point additions (neglecting constants),
 * each of which requires 16 field multiplications (4 squarings
 * and 12 general multiplications) in the case of curves defined
 * over GF(p), which are the only curves we have so far.
 *
 * Converting these precomputed points into affine form takes
 * three field multiplications for inverting Z and one squaring
 * and three multiplications for adjusting X and Y, i.e.
 * 7 multiplications in total (1 squaring and 6 general multiplications),
 * again except for constants.
 *
 * The average number of windows for a 'b' bit scalar is roughly
 *          b/(w+1).
 * Each of these windows (except possibly for the first one, but
 * we are ignoring constants anyway) requires one point addition.
 * As the precomputed table stores points in affine form, these
 * additions take only 11 field multiplications each (3 squarings
 * and 8 general multiplications).
 *
 * So the total workload, except for constants, is
 *
 *        2^(w-1)*[5 squarings + 18 multiplications]
 *      + (b/(w+1))*[3 squarings + 8 multiplications]
 *
 * If we assume that 10 squarings are as costly as 9 multiplications,
 * our task is to find the 'w' that, given 'b', minimizes
 *
 *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
 *      = 2^(w-1)*225 +           (b/(w+1))*107.
 *
 * Thus optimal window sizes should be roughly as follows:
 *
 *    w >= 6  if         b >= 1414
 *     w = 5  if 1413 >= b >=  505
 *     w = 4  if  504 >= b >=  169
 *     w = 3  if  168 >= b >=   51
 *     w = 2  if   50 >= b >=   13
 *     w = 1  if   12 >= b
 *
 * If we assume instead that squarings are exactly as costly as
 * multiplications, we have to minimize
 *      2^(w-1)*23 + (b/(w+1))*11.
 *
 * This gives us the following (nearly unchanged) table of optimal
 * windows sizes:
 *
 *    w >= 6  if         b >= 1406
 *     w = 5  if 1405 >= b >=  502
 *     w = 4  if  501 >= b >=  168
 *     w = 3  if  167 >= b >=   51
 *     w = 2  if   50 >= b >=   13
 *     w = 1  if   12 >= b
 *
 * Note that neither table tries to take into account memory usage
129 130 131 132 133 134 135
 * (allocation overhead, code locality etc.).  Actual timings with
 * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
 * and 256 bits, respectively, show that  w = 3  (instead of 4) is
 * preferrable; timings with NIST curve P-384 and 384-bit scalars
 * confirm that  w = 4  is optimal for this case; and timings with
 * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
 * of 5) is preferrable.  So we generously round up all the
B
Bodo Möller 已提交
136 137
 * boundaries and use the following table:
 *
138 139 140 141 142
 *    w >= 6  if         b >= 2000
 *     w = 5  if 1999 >= b >=  800
 *     w = 4  if  799 >= b >=  300
 *     w = 3  if  299 >= b >=   70
 *     w = 2  if   69 >= b >=   20
B
Bodo Möller 已提交
143 144 145 146
 *     w = 1  if   19 >= b
 */


147 148

/* Compute
B
Bodo Möller 已提交
149
 *      \sum scalars[i]*points[i]
150 151 152 153
 * where
 *      scalar*generator
 * is included in the addition if scalar != NULL
 */
154 155
int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	{
	BN_CTX *new_ctx = NULL;
	EC_POINT *generator = NULL;
	EC_POINT *tmp = NULL;
	size_t totalnum;
	size_t i, j;
	int k, t;
	int r_is_at_infinity = 1;
	size_t max_bits = 0;
	size_t *wsize = NULL; /* individual window sizes */
	unsigned long *wbits = NULL; /* individual window contents */
	int *wpos = NULL; /* position of bottom bit of current individual windows
	                   * (wpos[i] is valid if wbits[i] != 0) */
	size_t num_val;
	EC_POINT **val = NULL; /* precomputation */
	EC_POINT **v;
	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
	int ret = 0;
	
	if (scalar != NULL)
		{
		generator = EC_GROUP_get0_generator(group);
		if (generator == NULL)
			{
B
Bodo Möller 已提交
180
			ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
			return 0;
			}
		}
	
	for (i = 0; i < num; i++)
		{
		if (group->meth != points[i]->meth)
			{
			ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
			return 0;
			}
		}

	totalnum = num + (scalar != NULL);

	wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
	wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
	wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
	if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;

	/* num_val := total number of points to precompute */
	num_val = 0;
	for (i = 0; i < totalnum; i++)
		{
		size_t bits;

		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
		wsize[i] = EC_window_bits_for_scalar_size(bits);
		num_val += 1 << (wsize[i] - 1);
		if (bits > max_bits)
			max_bits = bits;
		wbits[i] = 0;
		wpos[i] = 0;
		}

	/* all precomputed points go into a single array 'val',
	 * 'val_sub[i]' is a pointer to the subarray for the i-th point */
	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
	if (val == NULL) goto err;
	val[num_val] = NULL; /* pivot element */

	val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
	if (val_sub == NULL) goto err;

	/* allocate points for precomputation */
	v = val;
	for (i = 0; i < totalnum; i++)
		{
		val_sub[i] = v;
		for (j = 0; j < (1 << (wsize[i] - 1)); j++)
			{
			*v = EC_POINT_new(group);
			if (*v == NULL) goto err;
			v++;
			}
		}
	if (!(v == val + num_val))
		{
		ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
		goto err;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			goto err;
		}
	
	tmp = EC_POINT_new(group);
	if (tmp == NULL) goto err;

	/* prepare precomputed values:
	 *    val_sub[i][0] :=     points[i]
	 *    val_sub[i][1] := 3 * points[i]
	 *    val_sub[i][2] := 5 * points[i]
	 *    ...
	 */
	for (i = 0; i < totalnum; i++)
		{
		if (i < num)
			{
			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
264 265 266 267
			if (scalars[i]->neg)
				{
				if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
				}
268 269 270 271
			}
		else
			{
			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
272 273 274 275
			if (scalar->neg)
				{
				if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
				}
276 277 278 279 280 281 282 283 284 285 286 287
			}

		if (wsize[i] > 1)
			{
			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
			for (j = 1; j < (1 << (wsize[i] - 1)); j++)
				{
				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
				}
			}
		}

288
#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
#endif

	r_is_at_infinity = 1;

	for (k = max_bits - 1; k >= 0; k--)
		{
		if (!r_is_at_infinity)
			{
			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
			}
		
		for (i = 0; i < totalnum; i++)
			{
			if (wbits[i] == 0)
				{
305
				const BIGNUM *s;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

				s = i < num ? scalars[i] : scalar;

				if (BN_is_bit_set(s, k))
					{
					/* look at bits  k - wsize[i] + 1 .. k  for this window */
					t = k - wsize[i] + 1;
					while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
						t++;
					wpos[i] = t;
					wbits[i] = 1;
					for (t = k - 1; t >= wpos[i]; t--)
						{
						wbits[i] <<= 1;
						if (BN_is_bit_set(s, t))
							wbits[i]++;
						}
					/* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
					}
				}
			
			if ((wbits[i] != 0) && (wpos[i] == k))
				{
				if (r_is_at_infinity)
					{
					if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
					r_is_at_infinity = 0;
					}
				else
					{
					if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
					}
				wbits[i] = 0;
				}
			}
		}

	if (r_is_at_infinity)
		if (!EC_POINT_set_to_infinity(group, r)) goto err;
	
	ret = 1;

 err:
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (tmp != NULL)
		EC_POINT_free(tmp);
	if (wsize != NULL)
		OPENSSL_free(wsize);
	if (wbits != NULL)
		OPENSSL_free(wbits);
	if (wpos != NULL)
		OPENSSL_free(wpos);
	if (val != NULL)
		{
		for (v = val; *v != NULL; v++)
			EC_POINT_clear_free(*v);

		OPENSSL_free(val);
		}
	if (val_sub != NULL)
		{
		OPENSSL_free(val_sub);
		}
	return ret;
	}
372 373 374 375 376 377 378 379 380 381 382 383 384 385


int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
	{
	const EC_POINT *points[1];
	const BIGNUM *scalars[1];

	points[0] = point;
	scalars[0] = p_scalar;

	return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
	}


386
int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
387 388 389 390 391 392 393 394 395
	{
	const EC_POINT *generator;
	BN_CTX *new_ctx = NULL;
	BIGNUM *order;
	int ret = 0;

	generator = EC_GROUP_get0_generator(group);
	if (generator == NULL)
		{
396
		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		return 0;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}
	
	BN_CTX_start(ctx);
	order = BN_CTX_get(ctx);
	if (order == NULL) goto err;
	
	if (!EC_GROUP_get_order(group, order, ctx)) return 0;
	if (BN_is_zero(order))
		{
414
		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
415 416 417 418 419 420 421 422 423 424 425 426 427
		goto err;
		}

	/* TODO */

	ret = 1;
	
 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}