bn_gf2m.c 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* crypto/bn/bn_gf2m.c */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
 * to the OpenSSL project.
 *
 * The ECC Code is licensed pursuant to the OpenSSL open source
 * license provided below.
 *
 * In addition, Sun covenants to all licensees who provide a reciprocal
 * covenant with respect to their own patents if any, not to sue under
 * current and future patent claims necessarily infringed by the making,
 * using, practicing, selling, offering for sale and/or otherwise
 * disposing of the ECC Code as delivered hereunder (or portions thereof),
 * provided that such covenant shall not apply:
 *  1) for code that a licensee deletes from the ECC Code;
 *  2) separates from the ECC Code; or
 *  3) for infringements caused by:
 *       i) the modification of the ECC Code or
 *      ii) the combination of the ECC Code with other software or
 *          devices where such combination causes the infringement.
 *
 * The software is originally written by Sheueling Chang Shantz and
 * Douglas Stebila of Sun Microsystems Laboratories.
 *
 */

30 31 32 33 34 35 36
/* NOTE: This file is licensed pursuant to the OpenSSL license below
 * and may be modified; but after modifications, the above covenant
 * may no longer apply!  In such cases, the corresponding paragraph
 * ["In addition, Sun covenants ... causes the infringement."] and
 * this note can be edited out; but please keep the Sun copyright
 * notice and attribution. */

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/* ====================================================================
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"

/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
#define MAX_ITERATIONS 50

static const BN_ULONG SQR_tb[16] =
  {     0,     1,     4,     5,    16,    17,    20,    21,
       64,    65,    68,    69,    80,    81,    84,    85 };
/* Platform-specific macros to accelerate squaring. */
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
#define SQR1(w) \
    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
#define SQR0(w) \
    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
#endif
#ifdef THIRTY_TWO_BIT
#define SQR1(w) \
    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
#define SQR0(w) \
    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
#endif

/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
 * result is a polynomial r with degree < 2 * BN_BITS - 1
 * The caller MUST ensure that the variables have the right amount
 * of space allocated.
 */
#ifdef THIRTY_TWO_BIT
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
	{
	register BN_ULONG h, l, s;
	BN_ULONG tab[8], top2b = a >> 30; 
	register BN_ULONG a1, a2, a4;

	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;

	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;

	s = tab[b       & 0x7]; l  = s;
	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;

	/* compensate for the top two bits of a */

	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 
	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 

	*r1 = h; *r0 = l;
	} 
#endif
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
	{
	register BN_ULONG h, l, s;
	BN_ULONG tab[16], top3b = a >> 61;
	register BN_ULONG a1, a2, a4, a8;

169
	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;

	s = tab[b       & 0xF]; l  = s;
	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;

	/* compensate for the top three bits of a */

	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 
	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 
	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 

	*r1 = h; *r0 = l;
	} 
#endif

/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
 * The caller MUST ensure that the variables have the right amount
 * of space allocated.
 */
static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
	{
	BN_ULONG m1, m0;
	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
	bn_GF2m_mul_1x1(r+1, r, a0, b0);
	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
	}


/* Add polynomials a and b and store result in r; r could be a or b, a and b 
 * could be equal; r is the bitwise XOR of a and b.
 */
int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
	{
	int i;
	const BIGNUM *at, *bt;

229 230 231
	bn_check_top(a);
	bn_check_top(b);

232 233 234
	if (a->top < b->top) { at = b; bt = a; }
	else { at = a; bt = b; }

235
	bn_wexpand(r, at->top);
236 237 238 239 240 241 242 243 244 245 246

	for (i = 0; i < bt->top; i++)
		{
		r->d[i] = at->d[i] ^ bt->d[i];
		}
	for (; i < at->top; i++)
		{
		r->d[i] = at->d[i];
		}
	
	r->top = at->top;
247
	bn_correct_top(r);
248 249 250 251 252 253 254 255 256 257 258 259 260
	
	return 1;
	}


/* Some functions allow for representation of the irreducible polynomials
 * as an int[], say p.  The irreducible f(t) is then of the form:
 *     t^p[0] + t^p[1] + ... + t^p[k]
 * where m = p[0] > p[1] > ... > p[k] = 0.
 */


/* Performs modular reduction of a and store result in r.  r could be a. */
261
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
262 263 264 265
	{
	int j, k;
	int n, dN, d0, d1;
	BN_ULONG zz, *z;
266 267 268

	bn_check_top(a);

269
	if (!p[0])
270
		{
271
		/* reduction mod 1 => return 0 */
272 273 274
		BN_zero(r);
		return 1;
		}
275 276 277

	/* Since the algorithm does reduction in the r value, if a != r, copy
	 * the contents of a into r so we can do reduction in r. 
278
	 */
B
Bodo Möller 已提交
279
	if (a != r)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		{
		if (!bn_wexpand(r, a->top)) return 0;
		for (j = 0; j < a->top; j++)
			{
			r->d[j] = a->d[j];
			}
		r->top = a->top;
		}
	z = r->d;

	/* start reduction */
	dN = p[0] / BN_BITS2;  
	for (j = r->top - 1; j > dN;)
		{
		zz = z[j];
		if (z[j] == 0) { j--; continue; }
		z[j] = 0;

298
		for (k = 1; p[k] != 0; k++)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
			{
			/* reducing component t^p[k] */
			n = p[0] - p[k];
			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
			n /= BN_BITS2; 
			z[j-n] ^= (zz>>d0);
			if (d0) z[j-n-1] ^= (zz<<d1);
			}

		/* reducing component t^0 */
		n = dN;  
		d0 = p[0] % BN_BITS2;
		d1 = BN_BITS2 - d0;
		z[j-n] ^= (zz >> d0);
		if (d0) z[j-n-1] ^= (zz << d1);
		}

	/* final round of reduction */
	while (j == dN)
		{

		d0 = p[0] % BN_BITS2;
		zz = z[dN] >> d0;
		if (zz == 0) break;
		d1 = BN_BITS2 - d0;
		
325 326 327 328 329
		/* clear up the top d1 bits */
		if (d0)
			z[dN] = (z[dN] << d1) >> d1;
		else
			z[dN] = 0;
330 331
		z[0] ^= zz; /* reduction t^0 component */

332
		for (k = 1; p[k] != 0; k++)
333
			{
B
Bodo Möller 已提交
334 335
			BN_ULONG tmp_ulong;

336 337 338 339 340
			/* reducing component t^p[k]*/
			n = p[k] / BN_BITS2;   
			d0 = p[k] % BN_BITS2;
			d1 = BN_BITS2 - d0;
			z[n] ^= (zz << d0);
B
Bodo Möller 已提交
341 342 343
			tmp_ulong = zz >> d1;
                        if (d0 && tmp_ulong)
                                z[n+1] ^= tmp_ulong;
344 345 346 347 348
			}

		
		}

349
	bn_correct_top(r);
350 351 352 353 354 355 356 357 358 359 360
	return 1;
	}

/* Performs modular reduction of a by p and store result in r.  r could be a.
 *
 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_arr function.
 */
int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
	{
361
	int ret = 0;
362 363
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
364 365
	bn_check_top(a);
	bn_check_top(p);
366
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
367 368
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
369 370 371 372 373
		{
		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
		goto err;
		}
	ret = BN_GF2m_mod_arr(r, a, arr);
374
	bn_check_top(r);
375
err:
376 377 378 379 380 381 382 383
	if (arr) OPENSSL_free(arr);
	return ret;
	}


/* Compute the product of two polynomials a and b, reduce modulo p, and store
 * the result in r.  r could be a or b; a could be b.
 */
384
int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
385 386 387 388
	{
	int zlen, i, j, k, ret = 0;
	BIGNUM *s;
	BN_ULONG x1, x0, y1, y0, zz[4];
389 390 391 392

	bn_check_top(a);
	bn_check_top(b);

393 394 395 396 397 398 399 400
	if (a == b)
		{
		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
		}

	BN_CTX_start(ctx);
	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
	
B
Bodo Möller 已提交
401
	zlen = a->top + b->top + 4;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	if (!bn_wexpand(s, zlen)) goto err;
	s->top = zlen;

	for (i = 0; i < zlen; i++) s->d[i] = 0;

	for (j = 0; j < b->top; j += 2)
		{
		y0 = b->d[j];
		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
		for (i = 0; i < a->top; i += 2)
			{
			x0 = a->d[i];
			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
			}
		}

420
	bn_correct_top(s);
421 422
	if (BN_GF2m_mod_arr(r, s, p))
		ret = 1;
423
	bn_check_top(r);
424

425
err:
426 427 428 429 430 431 432 433 434 435 436 437 438
	BN_CTX_end(ctx);
	return ret;
	}

/* Compute the product of two polynomials a and b, reduce modulo p, and store
 * the result in r.  r could be a or b; a could equal b.
 *
 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_mul_arr function.
 */
int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
	{
439
	int ret = 0;
440 441
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
442 443 444
	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(p);
445
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
446 447
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
448 449 450 451 452
		{
		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
		goto err;
		}
	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
453
	bn_check_top(r);
454
err:
455 456 457 458 459 460
	if (arr) OPENSSL_free(arr);
	return ret;
	}


/* Square a, reduce the result mod p, and store it in a.  r could be a. */
461
int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
462 463 464
	{
	int i, ret = 0;
	BIGNUM *s;
465 466

	bn_check_top(a);
467 468 469 470 471 472 473 474 475 476 477
	BN_CTX_start(ctx);
	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
	if (!bn_wexpand(s, 2 * a->top)) goto err;

	for (i = a->top - 1; i >= 0; i--)
		{
		s->d[2*i+1] = SQR1(a->d[i]);
		s->d[2*i  ] = SQR0(a->d[i]);
		}

	s->top = 2 * a->top;
478
	bn_correct_top(s);
479
	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
480
	bn_check_top(r);
481
	ret = 1;
482
err:
483 484 485 486 487 488 489 490 491 492 493 494
	BN_CTX_end(ctx);
	return ret;
	}

/* Square a, reduce the result mod p, and store it in a.  r could be a.
 *
 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_sqr_arr function.
 */
int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
	{
495
	int ret = 0;
496 497
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
498 499 500

	bn_check_top(a);
	bn_check_top(p);
501
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
502 503
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
504 505 506 507 508
		{
		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
		goto err;
		}
	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
509
	bn_check_top(r);
510
err:
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	if (arr) OPENSSL_free(arr);
	return ret;
	}


/* Invert a, reduce modulo p, and store the result in r. r could be a. 
 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
 *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
 *     of Elliptic Curve Cryptography Over Binary Fields".
 */
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
	{
	BIGNUM *b, *c, *u, *v, *tmp;
	int ret = 0;

526 527 528
	bn_check_top(a);
	bn_check_top(p);

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	BN_CTX_start(ctx);
	
	b = BN_CTX_get(ctx);
	c = BN_CTX_get(ctx);
	u = BN_CTX_get(ctx);
	v = BN_CTX_get(ctx);
	if (v == NULL) goto err;

	if (!BN_one(b)) goto err;
	if (!BN_GF2m_mod(u, a, p)) goto err;
	if (!BN_copy(v, p)) goto err;

	if (BN_is_zero(u)) goto err;

	while (1)
		{
		while (!BN_is_odd(u))
			{
			if (!BN_rshift1(u, u)) goto err;
			if (BN_is_odd(b))
				{
				if (!BN_GF2m_add(b, b, p)) goto err;
				}
			if (!BN_rshift1(b, b)) goto err;
			}

555
		if (BN_abs_is_word(u, 1)) break;
556 557 558 559 560 561 562 563 564 565 566 567 568

		if (BN_num_bits(u) < BN_num_bits(v))
			{
			tmp = u; u = v; v = tmp;
			tmp = b; b = c; c = tmp;
			}
		
		if (!BN_GF2m_add(u, u, v)) goto err;
		if (!BN_GF2m_add(b, b, c)) goto err;
		}


	if (!BN_copy(r, b)) goto err;
569
	bn_check_top(r);
570 571
	ret = 1;

572
err:
573 574 575 576 577 578 579 580 581 582
  	BN_CTX_end(ctx);
	return ret;
	}

/* Invert xx, reduce modulo p, and store the result in r. r could be xx. 
 *
 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_inv function.
 */
583
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
584 585 586 587
	{
	BIGNUM *field;
	int ret = 0;

588
	bn_check_top(xx);
589 590 591 592 593
	BN_CTX_start(ctx);
	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
	if (!BN_GF2m_arr2poly(p, field)) goto err;
	
	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
594
	bn_check_top(r);
595

596
err:
597 598 599 600 601
	BN_CTX_end(ctx);
	return ret;
	}


602
#ifndef OPENSSL_SUN_GF2M_DIV
603 604 605 606 607 608 609
/* Divide y by x, reduce modulo p, and store the result in r. r could be x 
 * or y, x could equal y.
 */
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
	{
	BIGNUM *xinv = NULL;
	int ret = 0;
610 611 612 613 614

	bn_check_top(y);
	bn_check_top(x);
	bn_check_top(p);

615 616 617 618 619 620
	BN_CTX_start(ctx);
	xinv = BN_CTX_get(ctx);
	if (xinv == NULL) goto err;
	
	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
621
	bn_check_top(r);
622 623
	ret = 1;

624
err:
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	BN_CTX_end(ctx);
	return ret;
	}
#else
/* Divide y by x, reduce modulo p, and store the result in r. r could be x 
 * or y, x could equal y.
 * Uses algorithm Modular_Division_GF(2^m) from 
 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to 
 *     the Great Divide".
 */
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
	{
	BIGNUM *a, *b, *u, *v;
	int ret = 0;

640 641 642 643
	bn_check_top(y);
	bn_check_top(x);
	bn_check_top(p);

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	BN_CTX_start(ctx);
	
	a = BN_CTX_get(ctx);
	b = BN_CTX_get(ctx);
	u = BN_CTX_get(ctx);
	v = BN_CTX_get(ctx);
	if (v == NULL) goto err;

	/* reduce x and y mod p */
	if (!BN_GF2m_mod(u, y, p)) goto err;
	if (!BN_GF2m_mod(a, x, p)) goto err;
	if (!BN_copy(b, p)) goto err;
	
	while (!BN_is_odd(a))
		{
		if (!BN_rshift1(a, a)) goto err;
		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
		if (!BN_rshift1(u, u)) goto err;
		}

	do
		{
		if (BN_GF2m_cmp(b, a) > 0)
			{
			if (!BN_GF2m_add(b, b, a)) goto err;
			if (!BN_GF2m_add(v, v, u)) goto err;
			do
				{
				if (!BN_rshift1(b, b)) goto err;
				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
				if (!BN_rshift1(v, v)) goto err;
				} while (!BN_is_odd(b));
			}
677
		else if (BN_abs_is_word(a, 1))
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
			break;
		else
			{
			if (!BN_GF2m_add(a, a, b)) goto err;
			if (!BN_GF2m_add(u, u, v)) goto err;
			do
				{
				if (!BN_rshift1(a, a)) goto err;
				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
				if (!BN_rshift1(u, u)) goto err;
				} while (!BN_is_odd(a));
			}
		} while (1);

	if (!BN_copy(r, u)) goto err;
693
	bn_check_top(r);
694 695
	ret = 1;

696
err:
697 698 699 700 701 702 703 704 705 706 707 708
  	BN_CTX_end(ctx);
	return ret;
	}
#endif

/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx 
 * or yy, xx could equal yy.
 *
 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_div function.
 */
709
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
710 711 712 713
	{
	BIGNUM *field;
	int ret = 0;

714 715 716
	bn_check_top(yy);
	bn_check_top(xx);

717 718 719 720 721
	BN_CTX_start(ctx);
	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
	if (!BN_GF2m_arr2poly(p, field)) goto err;
	
	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
722
	bn_check_top(r);
723

724
err:
725 726 727 728 729 730 731 732 733
	BN_CTX_end(ctx);
	return ret;
	}


/* Compute the bth power of a, reduce modulo p, and store
 * the result in r.  r could be a.
 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
 */
734
int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
735 736 737
	{
	int ret = 0, i, n;
	BIGNUM *u;
738 739 740 741

	bn_check_top(a);
	bn_check_top(b);

742 743
	if (BN_is_zero(b))
		return(BN_one(r));
744 745 746

	if (BN_abs_is_word(b, 1))
		return (BN_copy(r, a) != NULL);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	BN_CTX_start(ctx);
	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
	
	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
	
	n = BN_num_bits(b) - 1;
	for (i = n - 1; i >= 0; i--)
		{
		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
		if (BN_is_bit_set(b, i))
			{
			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
			}
		}
	if (!BN_copy(r, u)) goto err;
763
	bn_check_top(r);
764
	ret = 1;
765
err:
766 767 768 769 770 771 772 773 774 775 776 777 778
	BN_CTX_end(ctx);
	return ret;
	}

/* Compute the bth power of a, reduce modulo p, and store
 * the result in r.  r could be a.
 *
 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_exp_arr function.
 */
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
	{
779
	int ret = 0;
780 781
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
782 783 784
	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(p);
785
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
786 787
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
788 789 790 791 792
		{
		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
		goto err;
		}
	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
793
	bn_check_top(r);
794
err:
795 796 797 798 799 800 801 802
	if (arr) OPENSSL_free(arr);
	return ret;
	}

/* Compute the square root of a, reduce modulo p, and store
 * the result in r.  r could be a.
 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
 */
803
int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
804 805 806
	{
	int ret = 0;
	BIGNUM *u;
807

808 809
	bn_check_top(a);

810
	if (!p[0])
811
		{
812
		/* reduction mod 1 => return 0 */
813 814 815
		BN_zero(r);
		return 1;
		}
816

817 818 819 820 821
	BN_CTX_start(ctx);
	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
	
	if (!BN_set_bit(u, p[0] - 1)) goto err;
	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
822
	bn_check_top(r);
823

824
err:
825 826 827 828 829 830 831 832 833 834 835 836 837
	BN_CTX_end(ctx);
	return ret;
	}

/* Compute the square root of a, reduce modulo p, and store
 * the result in r.  r could be a.
 *
 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_sqrt_arr function.
 */
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
	{
838
	int ret = 0;
839 840
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
841 842
	bn_check_top(a);
	bn_check_top(p);
843
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
844 845
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
846
		{
847
		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
848 849 850
		goto err;
		}
	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
851
	bn_check_top(r);
852
err:
853 854 855 856 857 858 859
	if (arr) OPENSSL_free(arr);
	return ret;
	}

/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
 */
860
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
861
	{
862
	int ret = 0, count = 0, j;
863
	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
864

865 866
	bn_check_top(a_);

867
	if (!p[0])
868
		{
869
		/* reduction mod 1 => return 0 */
870 871 872
		BN_zero(r);
		return 1;
		}
873

874 875 876 877 878 879 880 881 882 883
	BN_CTX_start(ctx);
	a = BN_CTX_get(ctx);
	z = BN_CTX_get(ctx);
	w = BN_CTX_get(ctx);
	if (w == NULL) goto err;

	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
	
	if (BN_is_zero(a))
		{
884 885
		BN_zero(r);
		ret = 1;
886 887 888 889 890 891 892
		goto err;
		}

	if (p[0] & 0x1) /* m is odd */
		{
		/* compute half-trace of a */
		if (!BN_copy(z, a)) goto err;
R
Richard Levitte 已提交
893
		for (j = 1; j <= (p[0] - 1) / 2; j++)
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
			{
			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
			if (!BN_GF2m_add(z, z, a)) goto err;
			}
		
		}
	else /* m is even */
		{
		rho = BN_CTX_get(ctx);
		w2 = BN_CTX_get(ctx);
		tmp = BN_CTX_get(ctx);
		if (tmp == NULL) goto err;
		do
			{
			if (!BN_rand(rho, p[0], 0, 0)) goto err;
			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
911
			BN_zero(z);
912
			if (!BN_copy(w, rho)) goto err;
R
Richard Levitte 已提交
913
			for (j = 1; j <= p[0] - 1; j++)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
				{
				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
				if (!BN_GF2m_add(z, z, tmp)) goto err;
				if (!BN_GF2m_add(w, w2, rho)) goto err;
				}
			count++;
			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
		if (BN_is_zero(w))
			{
			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
			goto err;
			}
		}
	
	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
	if (!BN_GF2m_add(w, z, w)) goto err;
932 933 934 935 936
	if (BN_GF2m_cmp(w, a))
		{
		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
		goto err;
		}
937 938

	if (!BN_copy(r, z)) goto err;
939
	bn_check_top(r);
940 941 942

	ret = 1;

943
err:
944 945 946 947 948 949 950 951 952 953 954 955
	BN_CTX_end(ctx);
	return ret;
	}

/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
 *
 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
 * function is only provided for convenience; for best performance, use the 
 * BN_GF2m_mod_solve_quad_arr function.
 */
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
	{
956
	int ret = 0;
957 958
	const int max = BN_num_bits(p) + 1;
	int *arr=NULL;
959 960
	bn_check_top(a);
	bn_check_top(p);
961
	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
962
						max)) == NULL) goto err;
963 964
	ret = BN_GF2m_poly2arr(p, arr, max);
	if (!ret || ret > max)
965 966 967 968 969
		{
		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
		goto err;
		}
	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
970
	bn_check_top(r);
971
err:
972 973 974 975
	if (arr) OPENSSL_free(arr);
	return ret;
	}

976
/* Convert the bit-string representation of a polynomial
977 978
 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding 
 * to the bits with non-zero coefficient.  Array is terminated with -1.
979
 * Up to max elements of the array will be filled.  Return value is total
980
 * number of array elements that would be filled if array was large enough.
981
 */
982
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
983
	{
984
	int i, j, k = 0;
985 986
	BN_ULONG mask;

987
	if (BN_is_zero(a))
988
		return 0;
989 990 991

	for (i = a->top - 1; i >= 0; i--)
		{
992 993 994
		if (!a->d[i])
			/* skip word if a->d[i] == 0 */
			continue;
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		mask = BN_TBIT;
		for (j = BN_BITS2 - 1; j >= 0; j--)
			{
			if (a->d[i] & mask) 
				{
				if (k < max) p[k] = BN_BITS2 * i + j;
				k++;
				}
			mask >>= 1;
			}
		}

1007 1008 1009 1010 1011
	if (k < max) {
		p[k] = -1;
		k++;
	}

1012 1013 1014 1015
	return k;
	}

/* Convert the coefficient array representation of a polynomial to a 
1016
 * bit-string.  The array must be terminated by -1.
1017
 */
1018
int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1019 1020 1021
	{
	int i;

1022
	bn_check_top(a);
1023
	BN_zero(a);
1024
	for (i = 0; p[i] != -1; i++)
1025
		{
N
Nils Larsch 已提交
1026 1027
		if (BN_set_bit(a, p[i]) == 0)
			return 0;
1028
		}
1029
	bn_check_top(a);
1030

1031 1032 1033
	return 1;
	}