ecp_smpl.c 38.9 KB
Newer Older
1
/* crypto/ec/ecp_smpl.c */
2 3 4 5 6
/*
 * Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
 * for the OpenSSL project. Includes code written by Bodo Moeller for the
 * OpenSSL project.
 */
7
/* ====================================================================
B
Bodo Möller 已提交
8
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
9 10 11 12 13 14
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
15
 *    notice, this list of conditions and the following disclaimer.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
60 61 62 63 64
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
 * and contributed to the OpenSSL project.
 */
65

66
#include <openssl/err.h>
67
#include <openssl/symhacks.h>
68

69
#include "ec_lcl.h"
70 71

const EC_METHOD *EC_GFp_simple_method(void)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_prime_field,
        ec_GFp_simple_group_init,
        ec_GFp_simple_group_finish,
        ec_GFp_simple_group_clear_finish,
        ec_GFp_simple_group_copy,
        ec_GFp_simple_group_set_curve,
        ec_GFp_simple_group_get_curve,
        ec_GFp_simple_group_get_degree,
        ec_GFp_simple_group_check_discriminant,
        ec_GFp_simple_point_init,
        ec_GFp_simple_point_finish,
        ec_GFp_simple_point_clear_finish,
        ec_GFp_simple_point_copy,
        ec_GFp_simple_point_set_to_infinity,
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
        ec_GFp_simple_point_set_affine_coordinates,
        ec_GFp_simple_point_get_affine_coordinates,
        0, 0, 0,
        ec_GFp_simple_add,
        ec_GFp_simple_dbl,
        ec_GFp_simple_invert,
        ec_GFp_simple_is_at_infinity,
        ec_GFp_simple_is_on_curve,
        ec_GFp_simple_cmp,
        ec_GFp_simple_make_affine,
        ec_GFp_simple_points_make_affine,
        0 /* mul */ ,
        0 /* precompute_mult */ ,
        0 /* have_precompute_mult */ ,
        ec_GFp_simple_field_mul,
        ec_GFp_simple_field_sqr,
        0 /* field_div */ ,
        0 /* field_encode */ ,
        0 /* field_decode */ ,
        0                       /* field_set_to_one */
    };

    return &ret;
}
115

116 117
/*
 * Most method functions in this file are designed to work with
B
Bodo Möller 已提交
118 119 120 121 122
 * non-trivial representations of field elements if necessary
 * (see ecp_mont.c): while standard modular addition and subtraction
 * are used, the field_mul and field_sqr methods will be used for
 * multiplication, and field_encode and field_decode (if defined)
 * will be used for converting between representations.
123
 *
B
Bodo Möller 已提交
124 125 126 127 128 129
 * Functions ec_GFp_simple_points_make_affine() and
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
 * that if a non-trivial representation is used, it is a Montgomery
 * representation (i.e. 'encoding' means multiplying by some factor R).
 */

130
int ec_GFp_simple_group_init(EC_GROUP *group)
131 132 133 134 135
{
    group->field = BN_new();
    group->a = BN_new();
    group->b = BN_new();
    if (!group->field || !group->a || !group->b) {
R
Rich Salz 已提交
136 137 138
        BN_free(group->field);
        BN_free(group->a);
        BN_free(group->b);
139 140 141 142 143
        return 0;
    }
    group->a_is_minus3 = 0;
    return 1;
}
144

145
void ec_GFp_simple_group_finish(EC_GROUP *group)
146 147 148 149 150
{
    BN_free(group->field);
    BN_free(group->a);
    BN_free(group->b);
}
151 152

void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
153 154 155 156 157
{
    BN_clear_free(group->field);
    BN_clear_free(group->a);
    BN_clear_free(group->b);
}
158 159

int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
160 161 162 163 164 165 166
{
    if (!BN_copy(dest->field, src->field))
        return 0;
    if (!BN_copy(dest->a, src->a))
        return 0;
    if (!BN_copy(dest->b, src->b))
        return 0;
167

168
    dest->a_is_minus3 = src->a_is_minus3;
169

170 171
    return 1;
}
172

173
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                                  const BIGNUM *p, const BIGNUM *a,
                                  const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp_a;

    /* p must be a prime > 3 */
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
        ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
        return 0;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    tmp_a = BN_CTX_get(ctx);
    if (tmp_a == NULL)
        goto err;

    /* group->field */
    if (!BN_copy(group->field, p))
        goto err;
    BN_set_negative(group->field, 0);

    /* group->a */
    if (!BN_nnmod(tmp_a, a, p, ctx))
        goto err;
    if (group->meth->field_encode) {
        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
            goto err;
    } else if (!BN_copy(group->a, tmp_a))
        goto err;

    /* group->b */
    if (!BN_nnmod(group->b, b, p, ctx))
        goto err;
    if (group->meth->field_encode)
        if (!group->meth->field_encode(group, group->b, group->b, ctx))
            goto err;

    /* group->a_is_minus3 */
    if (!BN_add_word(tmp_a, 3))
        goto err;
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));

    ret = 1;
225 226

 err:
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
                                  BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX *new_ctx = NULL;

    if (p != NULL) {
        if (!BN_copy(p, group->field))
            return 0;
    }

    if (a != NULL || b != NULL) {
        if (group->meth->field_decode) {
            if (ctx == NULL) {
                ctx = new_ctx = BN_CTX_new();
                if (ctx == NULL)
                    return 0;
            }
            if (a != NULL) {
                if (!group->meth->field_decode(group, a, group->a, ctx))
                    goto err;
            }
            if (b != NULL) {
                if (!group->meth->field_decode(group, b, group->b, ctx))
                    goto err;
            }
        } else {
            if (a != NULL) {
                if (!BN_copy(a, group->a))
                    goto err;
            }
            if (b != NULL) {
                if (!BN_copy(b, group->b))
                    goto err;
            }
        }
    }

    ret = 1;
272

273 274 275 276 277
 err:
    if (new_ctx)
        BN_CTX_free(new_ctx);
    return ret;
}
278

279
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
280 281 282
{
    return BN_num_bits(group->field);
}
283

284
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
    int ret = 0;
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
    const BIGNUM *p = group->field;
    BN_CTX *new_ctx = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL) {
            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
                  ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }
    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    tmp_1 = BN_CTX_get(ctx);
    tmp_2 = BN_CTX_get(ctx);
    order = BN_CTX_get(ctx);
    if (order == NULL)
        goto err;

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, a, group->a, ctx))
            goto err;
        if (!group->meth->field_decode(group, b, group->b, ctx))
            goto err;
    } else {
        if (!BN_copy(a, group->a))
            goto err;
        if (!BN_copy(b, group->b))
            goto err;
    }

320 321 322 323 324
    /*-
     * check the discriminant:
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
     * 0 =< a, b < p
     */
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    if (BN_is_zero(a)) {
        if (BN_is_zero(b))
            goto err;
    } else if (!BN_is_zero(b)) {
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
            goto err;
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
            goto err;
        if (!BN_lshift(tmp_1, tmp_2, 2))
            goto err;
        /* tmp_1 = 4*a^3 */

        if (!BN_mod_sqr(tmp_2, b, p, ctx))
            goto err;
        if (!BN_mul_word(tmp_2, 27))
            goto err;
        /* tmp_2 = 27*b^2 */

        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
            goto err;
        if (BN_is_zero(a))
            goto err;
    }
    ret = 1;
B
Bodo Möller 已提交
349

350 351 352 353 354 355 356
 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}
B
Bodo Möller 已提交
357

358
int ec_GFp_simple_point_init(EC_POINT *point)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
    point->X = BN_new();
    point->Y = BN_new();
    point->Z = BN_new();
    point->Z_is_one = 0;

    if (!point->X || !point->Y || !point->Z) {
        if (point->X)
            BN_free(point->X);
        if (point->Y)
            BN_free(point->Y);
        if (point->Z)
            BN_free(point->Z);
        return 0;
    }
    return 1;
}
376 377

void ec_GFp_simple_point_finish(EC_POINT *point)
378 379 380 381 382
{
    BN_free(point->X);
    BN_free(point->Y);
    BN_free(point->Z);
}
383 384

void ec_GFp_simple_point_clear_finish(EC_POINT *point)
385 386 387 388 389 390
{
    BN_clear_free(point->X);
    BN_clear_free(point->Y);
    BN_clear_free(point->Z);
    point->Z_is_one = 0;
}
391 392

int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
    if (!BN_copy(dest->X, src->X))
        return 0;
    if (!BN_copy(dest->Y, src->Y))
        return 0;
    if (!BN_copy(dest->Z, src->Z))
        return 0;
    dest->Z_is_one = src->Z_is_one;

    return 1;
}

int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
                                        EC_POINT *point)
{
    point->Z_is_one = 0;
    BN_zero(point->Z);
    return 1;
}

int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                  EC_POINT *point,
                                                  const BIGNUM *x,
                                                  const BIGNUM *y,
                                                  const BIGNUM *z,
                                                  BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    int ret = 0;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    if (x != NULL) {
        if (!BN_nnmod(point->X, x, group->field, ctx))
            goto err;
        if (group->meth->field_encode) {
            if (!group->meth->field_encode(group, point->X, point->X, ctx))
                goto err;
        }
    }

    if (y != NULL) {
        if (!BN_nnmod(point->Y, y, group->field, ctx))
            goto err;
        if (group->meth->field_encode) {
            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
                goto err;
        }
    }

    if (z != NULL) {
        int Z_is_one;

        if (!BN_nnmod(point->Z, z, group->field, ctx))
            goto err;
        Z_is_one = BN_is_one(point->Z);
        if (group->meth->field_encode) {
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
                if (!group->meth->field_set_to_one(group, point->Z, ctx))
                    goto err;
            } else {
                if (!group->
                    meth->field_encode(group, point->Z, point->Z, ctx))
                    goto err;
            }
        }
        point->Z_is_one = Z_is_one;
    }

    ret = 1;

468
 err:
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                  const EC_POINT *point,
                                                  BIGNUM *x, BIGNUM *y,
                                                  BIGNUM *z, BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    int ret = 0;

    if (group->meth->field_decode != 0) {
        if (ctx == NULL) {
            ctx = new_ctx = BN_CTX_new();
            if (ctx == NULL)
                return 0;
        }

        if (x != NULL) {
            if (!group->meth->field_decode(group, x, point->X, ctx))
                goto err;
        }
        if (y != NULL) {
            if (!group->meth->field_decode(group, y, point->Y, ctx))
                goto err;
        }
        if (z != NULL) {
            if (!group->meth->field_decode(group, z, point->Z, ctx))
                goto err;
        }
    } else {
        if (x != NULL) {
            if (!BN_copy(x, point->X))
                goto err;
        }
        if (y != NULL) {
            if (!BN_copy(y, point->Y))
                goto err;
        }
        if (z != NULL) {
            if (!BN_copy(z, point->Z))
                goto err;
        }
    }

    ret = 1;
517

518
 err:
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
                                               EC_POINT *point,
                                               const BIGNUM *x,
                                               const BIGNUM *y, BN_CTX *ctx)
{
    if (x == NULL || y == NULL) {
        /*
         * unlike for projective coordinates, we do not tolerate this
         */
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
              ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }

    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
                                                    BN_value_one(), ctx);
}

int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                               const EC_POINT *point,
                                               BIGNUM *x, BIGNUM *y,
                                               BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
    const BIGNUM *Z_;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    Z = BN_CTX_get(ctx);
    Z_1 = BN_CTX_get(ctx);
    Z_2 = BN_CTX_get(ctx);
    Z_3 = BN_CTX_get(ctx);
    if (Z_3 == NULL)
        goto err;

    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
            goto err;
        Z_ = Z;
    } else {
        Z_ = point->Z;
    }

    if (BN_is_one(Z_)) {
        if (group->meth->field_decode) {
            if (x != NULL) {
                if (!group->meth->field_decode(group, x, point->X, ctx))
                    goto err;
            }
            if (y != NULL) {
                if (!group->meth->field_decode(group, y, point->Y, ctx))
                    goto err;
            }
        } else {
            if (x != NULL) {
                if (!BN_copy(x, point->X))
                    goto err;
            }
            if (y != NULL) {
                if (!BN_copy(y, point->Y))
                    goto err;
            }
        }
    } else {
        if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) {
            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
                  ERR_R_BN_LIB);
            goto err;
        }

        if (group->meth->field_encode == 0) {
            /* field_sqr works on standard representation */
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
                goto err;
        } else {
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
                goto err;
        }

        if (x != NULL) {
            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in X:
             */
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
                goto err;
        }

        if (y != NULL) {
            if (group->meth->field_encode == 0) {
                /*
                 * field_mul works on standard representation
                 */
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
                    goto err;
            } else {
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
                    goto err;
            }

            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in Y:
             */
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
                goto err;
        }
    }

    ret = 1;
649 650

 err:
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
    int ret = 0;

    if (a == b)
        return EC_POINT_dbl(group, r, a, ctx);
    if (EC_POINT_is_at_infinity(group, a))
        return EC_POINT_copy(r, b);
    if (EC_POINT_is_at_infinity(group, b))
        return EC_POINT_copy(r, a);

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    n4 = BN_CTX_get(ctx);
    n5 = BN_CTX_get(ctx);
    n6 = BN_CTX_get(ctx);
    if (n6 == NULL)
        goto end;

    /*
     * Note that in this function we must not read components of 'a' or 'b'
     * once we have written the corresponding components of 'r'. ('r' might
     * be one of 'a' or 'b'.)
     */

    /* n1, n2 */
    if (b->Z_is_one) {
        if (!BN_copy(n1, a->X))
            goto end;
        if (!BN_copy(n2, a->Y))
            goto end;
        /* n1 = X_a */
        /* n2 = Y_a */
    } else {
        if (!field_sqr(group, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n1, a->X, n0, ctx))
            goto end;
        /* n1 = X_a * Z_b^2 */

        if (!field_mul(group, n0, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n2, a->Y, n0, ctx))
            goto end;
        /* n2 = Y_a * Z_b^3 */
    }

    /* n3, n4 */
    if (a->Z_is_one) {
        if (!BN_copy(n3, b->X))
            goto end;
        if (!BN_copy(n4, b->Y))
            goto end;
        /* n3 = X_b */
        /* n4 = Y_b */
    } else {
        if (!field_sqr(group, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n3, b->X, n0, ctx))
            goto end;
        /* n3 = X_b * Z_a^2 */

        if (!field_mul(group, n0, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n4, b->Y, n0, ctx))
            goto end;
        /* n4 = Y_b * Z_a^3 */
    }

    /* n5, n6 */
    if (!BN_mod_sub_quick(n5, n1, n3, p))
        goto end;
    if (!BN_mod_sub_quick(n6, n2, n4, p))
        goto end;
    /* n5 = n1 - n3 */
    /* n6 = n2 - n4 */

    if (BN_is_zero(n5)) {
        if (BN_is_zero(n6)) {
            /* a is the same point as b */
            BN_CTX_end(ctx);
            ret = EC_POINT_dbl(group, r, a, ctx);
            ctx = NULL;
            goto end;
        } else {
            /* a is the inverse of b */
            BN_zero(r->Z);
            r->Z_is_one = 0;
            ret = 1;
            goto end;
        }
    }

    /* 'n7', 'n8' */
    if (!BN_mod_add_quick(n1, n1, n3, p))
        goto end;
    if (!BN_mod_add_quick(n2, n2, n4, p))
        goto end;
    /* 'n7' = n1 + n3 */
    /* 'n8' = n2 + n4 */

    /* Z_r */
    if (a->Z_is_one && b->Z_is_one) {
        if (!BN_copy(r->Z, n5))
            goto end;
    } else {
        if (a->Z_is_one) {
            if (!BN_copy(n0, b->Z))
                goto end;
        } else if (b->Z_is_one) {
            if (!BN_copy(n0, a->Z))
                goto end;
        } else {
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
                goto end;
        }
        if (!field_mul(group, r->Z, n0, n5, ctx))
            goto end;
    }
    r->Z_is_one = 0;
    /* Z_r = Z_a * Z_b * n5 */

    /* X_r */
    if (!field_sqr(group, n0, n6, ctx))
        goto end;
    if (!field_sqr(group, n4, n5, ctx))
        goto end;
    if (!field_mul(group, n3, n1, n4, ctx))
        goto end;
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
        goto end;
    /* X_r = n6^2 - n5^2 * 'n7' */

    /* 'n9' */
    if (!BN_mod_lshift1_quick(n0, r->X, p))
        goto end;
    if (!BN_mod_sub_quick(n0, n3, n0, p))
        goto end;
    /* n9 = n5^2 * 'n7' - 2 * X_r */

    /* Y_r */
    if (!field_mul(group, n0, n0, n6, ctx))
        goto end;
    if (!field_mul(group, n5, n4, n5, ctx))
        goto end;               /* now n5 is n5^3 */
    if (!field_mul(group, n1, n2, n5, ctx))
        goto end;
    if (!BN_mod_sub_quick(n0, n0, n1, p))
        goto end;
    if (BN_is_odd(n0))
        if (!BN_add(n0, n0, p))
            goto end;
    /* now  0 <= n0 < 2*p,  and n0 is even */
    if (!BN_rshift1(r->Y, n0))
        goto end;
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */

    ret = 1;
835 836

 end:
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    if (ctx)                    /* otherwise we already called BN_CTX_end */
        BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, a)) {
        BN_zero(r->Z);
        r->Z_is_one = 0;
        return 1;
    }

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    if (n3 == NULL)
        goto err;

    /*
     * Note that in this function we must not read components of 'a' once we
     * have written the corresponding components of 'r'. ('r' might the same
     * as 'a'.)
     */

    /* n1 */
    if (a->Z_is_one) {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, group->a, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve */
    } else if (group->a_is_minus3) {
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!BN_mod_add_quick(n0, a->X, n1, p))
            goto err;
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
            goto err;
        if (!field_mul(group, n1, n0, n2, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, n1, p))
            goto err;
M
Matt Caswell 已提交
909 910 911 912
        /*-
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
         *    = 3 * X_a^2 - 3 * Z_a^4
         */
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    } else {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!field_sqr(group, n1, n1, ctx))
            goto err;
        if (!field_mul(group, n1, n1, group->a, ctx))
            goto err;
        if (!BN_mod_add_quick(n1, n1, n0, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
    }

    /* Z_r */
    if (a->Z_is_one) {
        if (!BN_copy(n0, a->Y))
            goto err;
    } else {
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
            goto err;
    }
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
        goto err;
    r->Z_is_one = 0;
    /* Z_r = 2 * Y_a * Z_a */

    /* n2 */
    if (!field_sqr(group, n3, a->Y, ctx))
        goto err;
    if (!field_mul(group, n2, a->X, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
        goto err;
    /* n2 = 4 * X_a * Y_a^2 */

    /* X_r */
    if (!BN_mod_lshift1_quick(n0, n2, p))
        goto err;
    if (!field_sqr(group, r->X, n1, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
        goto err;
    /* X_r = n1^2 - 2 * n2 */

    /* n3 */
    if (!field_sqr(group, n0, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
        goto err;
    /* n3 = 8 * Y_a^4 */

    /* Y_r */
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
        goto err;
    if (!field_mul(group, n0, n1, n0, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
        goto err;
    /* Y_r = n1 * (n2 - X_r) - n3 */

    ret = 1;
979 980

 err:
981 982 983 984 985
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}
986

987
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
988 989 990 991
{
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
        /* point is its own inverse */
        return 1;
B
Bodo Möller 已提交
992

993 994
    return BN_usub(point->Y, group->field, point->Y);
}
B
Bodo Möller 已提交
995

996
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
{
    return BN_is_zero(point->Z);
}

int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                              BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *rh, *tmp, *Z4, *Z6;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, point))
        return 1;

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    rh = BN_CTX_get(ctx);
    tmp = BN_CTX_get(ctx);
    Z4 = BN_CTX_get(ctx);
    Z6 = BN_CTX_get(ctx);
    if (Z6 == NULL)
        goto err;

M
Matt Caswell 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
    /*-
     * We have a curve defined by a Weierstrass equation
     *      y^2 = x^3 + a*x + b.
     * The point to consider is given in Jacobian projective coordinates
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
     * Substituting this and multiplying by  Z^6  transforms the above equation into
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
     * To test this, we add up the right-hand side in 'rh'.
     */
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    /* rh := X^2 */
    if (!field_sqr(group, rh, point->X, ctx))
        goto err;

    if (!point->Z_is_one) {
        if (!field_sqr(group, tmp, point->Z, ctx))
            goto err;
        if (!field_sqr(group, Z4, tmp, ctx))
            goto err;
        if (!field_mul(group, Z6, Z4, tmp, ctx))
            goto err;

        /* rh := (rh + a*Z^4)*X */
        if (group->a_is_minus3) {
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
                goto err;
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
                goto err;
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        } else {
            if (!field_mul(group, tmp, Z4, group->a, ctx))
                goto err;
            if (!BN_mod_add_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        }

        /* rh := rh + b*Z^6 */
        if (!field_mul(group, tmp, group->b, Z6, ctx))
            goto err;
        if (!BN_mod_add_quick(rh, rh, tmp, p))
            goto err;
    } else {
        /* point->Z_is_one */

        /* rh := (rh + a)*X */
        if (!BN_mod_add_quick(rh, rh, group->a, p))
            goto err;
        if (!field_mul(group, rh, rh, point->X, ctx))
            goto err;
        /* rh := rh + b */
        if (!BN_mod_add_quick(rh, rh, group->b, p))
            goto err;
    }

    /* 'lh' := Y^2 */
    if (!field_sqr(group, tmp, point->Y, ctx))
        goto err;

    ret = (0 == BN_ucmp(tmp, rh));
B
Bodo Möller 已提交
1097 1098

 err:
1099 1100 1101 1102 1103 1104 1105 1106 1107
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx)
{
M
Matt Caswell 已提交
1108 1109 1110 1111 1112 1113
    /*-
     * return values:
     *  -1   error
     *   0   equal (in affine coordinates)
     *   1   not equal
     */
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
    const BIGNUM *tmp1_, *tmp2_;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, a)) {
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
    }

    if (EC_POINT_is_at_infinity(group, b))
        return 1;

    if (a->Z_is_one && b->Z_is_one) {
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
    }

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    tmp1 = BN_CTX_get(ctx);
    tmp2 = BN_CTX_get(ctx);
    Za23 = BN_CTX_get(ctx);
    Zb23 = BN_CTX_get(ctx);
    if (Zb23 == NULL)
        goto end;

M
Matt Caswell 已提交
1151 1152 1153 1154 1155 1156
    /*-
     * We have to decide whether
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
     * or equivalently, whether
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
     */
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

    if (!b->Z_is_one) {
        if (!field_sqr(group, Zb23, b->Z, ctx))
            goto end;
        if (!field_mul(group, tmp1, a->X, Zb23, ctx))
            goto end;
        tmp1_ = tmp1;
    } else
        tmp1_ = a->X;
    if (!a->Z_is_one) {
        if (!field_sqr(group, Za23, a->Z, ctx))
            goto end;
        if (!field_mul(group, tmp2, b->X, Za23, ctx))
            goto end;
        tmp2_ = tmp2;
    } else
        tmp2_ = b->X;

    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
    if (BN_cmp(tmp1_, tmp2_) != 0) {
        ret = 1;                /* points differ */
        goto end;
    }

    if (!b->Z_is_one) {
        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
            goto end;
        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
            goto end;
        /* tmp1_ = tmp1 */
    } else
        tmp1_ = a->Y;
    if (!a->Z_is_one) {
        if (!field_mul(group, Za23, Za23, a->Z, ctx))
            goto end;
        if (!field_mul(group, tmp2, b->Y, Za23, ctx))
            goto end;
        /* tmp2_ = tmp2 */
    } else
        tmp2_ = b->Y;

    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
    if (BN_cmp(tmp1_, tmp2_) != 0) {
        ret = 1;                /* points differ */
        goto end;
    }

    /* points are equal */
    ret = 0;
1206 1207

 end:
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
                              BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x, *y;
    int ret = 0;

    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx))
        goto err;
    if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
        goto err;
    if (!point->Z_is_one) {
        ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
        goto err;
    }

    ret = 1;
B
Bodo Möller 已提交
1246

1247
 err:
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    return ret;
}

int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                     EC_POINT *points[], BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp, *tmp_Z;
    BIGNUM **prod_Z = NULL;
    size_t i;
    int ret = 0;

    if (num == 0)
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    tmp = BN_CTX_get(ctx);
    tmp_Z = BN_CTX_get(ctx);
    if (tmp == NULL || tmp_Z == NULL)
        goto err;

    prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]);
    if (prod_Z == NULL)
        goto err;
    for (i = 0; i < num; i++) {
        prod_Z[i] = BN_new();
        if (prod_Z[i] == NULL)
            goto err;
    }

    /*
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
     * skipping any zero-valued inputs (pretend that they're 1).
     */

    if (!BN_is_zero(points[0]->Z)) {
        if (!BN_copy(prod_Z[0], points[0]->Z))
            goto err;
    } else {
        if (group->meth->field_set_to_one != 0) {
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
                goto err;
        } else {
            if (!BN_one(prod_Z[0]))
                goto err;
        }
    }

    for (i = 1; i < num; i++) {
        if (!BN_is_zero(points[i]->Z)) {
            if (!group->
                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
                                ctx))
                goto err;
        } else {
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
                goto err;
        }
    }

    /*
     * Now use a single explicit inversion to replace every non-zero
     * points[i]->Z by its inverse.
     */

    if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) {
        ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
        goto err;
    }
    if (group->meth->field_encode != 0) {
        /*
         * In the Montgomery case, we just turned R*H (representing H) into
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
         * multiply by the Montgomery factor twice.
         */
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
            goto err;
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
            goto err;
    }

    for (i = num - 1; i > 0; --i) {
        /*
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
         * .. points[i]->Z (zero-valued inputs skipped).
         */
        if (!BN_is_zero(points[i]->Z)) {
            /*
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
             * inverses 0 .. i, Z values 0 .. i - 1).
             */
            if (!group->
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
                goto err;
            /*
             * Update tmp to satisfy the loop invariant for i - 1.
             */
            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
                goto err;
            /* Replace points[i]->Z by its inverse. */
            if (!BN_copy(points[i]->Z, tmp_Z))
                goto err;
        }
    }

    if (!BN_is_zero(points[0]->Z)) {
        /* Replace points[0]->Z by its inverse. */
        if (!BN_copy(points[0]->Z, tmp))
            goto err;
    }

    /* Finally, fix up the X and Y coordinates for all points. */

    for (i = 0; i < num; i++) {
        EC_POINT *p = points[i];

        if (!BN_is_zero(p->Z)) {
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */

            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
                goto err;
            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
                goto err;

            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
                goto err;
            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
                goto err;

            if (group->meth->field_set_to_one != 0) {
                if (!group->meth->field_set_to_one(group, p->Z, ctx))
                    goto err;
            } else {
                if (!BN_one(p->Z))
                    goto err;
            }
            p->Z_is_one = 1;
        }
    }

    ret = 1;
1398

1399
 err:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    BN_CTX_end(ctx);
    if (new_ctx != NULL)
        BN_CTX_free(new_ctx);
    if (prod_Z != NULL) {
        for (i = 0; i < num; i++) {
            if (prod_Z[i] == NULL)
                break;
            BN_clear_free(prod_Z[i]);
        }
        OPENSSL_free(prod_Z);
    }
    return ret;
}

int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
                            const BIGNUM *b, BN_CTX *ctx)
{
    return BN_mod_mul(r, a, b, group->field, ctx);
}

int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
                            BN_CTX *ctx)
{
    return BN_mod_sqr(r, a, group->field, ctx);
}