ecp_smpl.c 40.2 KB
Newer Older
1
/* crypto/ec/ecp_smpl.c */
2
/* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 4 5
 * for the OpenSSL project. 
 * Includes code written by Bodo Moeller for the OpenSSL project.
*/
6
/* ====================================================================
B
Bodo Möller 已提交
7
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
59 60 61 62 63
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
 * and contributed to the OpenSSL project.
 */
64

65
#include <openssl/err.h>
66
#include <openssl/symhacks.h>
67

68
#include "ec_lcl.h"
69 70 71

const EC_METHOD *EC_GFp_simple_method(void)
	{
B
Bodo Möller 已提交
72
	static const EC_METHOD ret = {
73
		NID_X9_62_prime_field,
B
Bodo Möller 已提交
74 75 76 77
		ec_GFp_simple_group_init,
		ec_GFp_simple_group_finish,
		ec_GFp_simple_group_clear_finish,
		ec_GFp_simple_group_copy,
78 79
		ec_GFp_simple_group_set_curve,
		ec_GFp_simple_group_get_curve,
80
		ec_GFp_simple_group_get_degree,
81
		ec_GFp_simple_group_check_discriminant,
B
Bodo Möller 已提交
82 83 84 85
		ec_GFp_simple_point_init,
		ec_GFp_simple_point_finish,
		ec_GFp_simple_point_clear_finish,
		ec_GFp_simple_point_copy,
86
		ec_GFp_simple_point_set_to_infinity,
B
Bodo Möller 已提交
87 88
		ec_GFp_simple_set_Jprojective_coordinates_GFp,
		ec_GFp_simple_get_Jprojective_coordinates_GFp,
89 90 91
		ec_GFp_simple_point_set_affine_coordinates,
		ec_GFp_simple_point_get_affine_coordinates,
		ec_GFp_simple_set_compressed_coordinates,
B
Bodo Möller 已提交
92 93 94 95
		ec_GFp_simple_point2oct,
		ec_GFp_simple_oct2point,
		ec_GFp_simple_add,
		ec_GFp_simple_dbl,
B
Bodo Möller 已提交
96
		ec_GFp_simple_invert,
B
Bodo Möller 已提交
97 98
		ec_GFp_simple_is_at_infinity,
		ec_GFp_simple_is_on_curve,
B
Bodo Möller 已提交
99
		ec_GFp_simple_cmp,
B
Bodo Möller 已提交
100
		ec_GFp_simple_make_affine,
101
		ec_GFp_simple_points_make_affine,
102 103 104
		0 /* mul */,
		0 /* precompute_mult */,
		0 /* have_precompute_mult */,	
105
		ec_GFp_simple_field_mul,
B
Bodo Möller 已提交
106
		ec_GFp_simple_field_sqr,
107
		0 /* field_div */,
B
Bodo Möller 已提交
108
		0 /* field_encode */,
109 110
		0 /* field_decode */,
		0 /* field_set_to_one */ };
111 112 113

	return &ret;
	}
114 115


B
Bodo Möller 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129
/* Most method functions in this file are designed to work with
 * non-trivial representations of field elements if necessary
 * (see ecp_mont.c): while standard modular addition and subtraction
 * are used, the field_mul and field_sqr methods will be used for
 * multiplication, and field_encode and field_decode (if defined)
 * will be used for converting between representations.

 * Functions ec_GFp_simple_points_make_affine() and
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
 * that if a non-trivial representation is used, it is a Montgomery
 * representation (i.e. 'encoding' means multiplying by some factor R).
 */


130 131 132 133 134 135 136 137 138 139
int ec_GFp_simple_group_init(EC_GROUP *group)
	{
	BN_init(&group->field);
	BN_init(&group->a);
	BN_init(&group->b);
	group->a_is_minus3 = 0;
	return 1;
	}


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void ec_GFp_simple_group_finish(EC_GROUP *group)
	{
	BN_free(&group->field);
	BN_free(&group->a);
	BN_free(&group->b);
	}


void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
	{
	BN_clear_free(&group->field);
	BN_clear_free(&group->a);
	BN_clear_free(&group->b);
	}


int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
	{
	if (!BN_copy(&dest->field, &src->field)) return 0;
	if (!BN_copy(&dest->a, &src->a)) return 0;
	if (!BN_copy(&dest->b, &src->b)) return 0;

	dest->a_is_minus3 = src->a_is_minus3;

	return 1;
	}


168
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
169 170 171 172 173 174
	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	int ret = 0;
	BN_CTX *new_ctx = NULL;
	BIGNUM *tmp_a;
	
B
Bodo Möller 已提交
175 176 177
	/* p must be a prime > 3 */
	if (BN_num_bits(p) <= 2 || !BN_is_odd(p))
		{
178
		ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
B
Bodo Möller 已提交
179 180 181
		return 0;
		}

182 183 184 185 186 187 188
	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

189
	BN_CTX_start(ctx);
190 191 192 193 194
	tmp_a = BN_CTX_get(ctx);
	if (tmp_a == NULL) goto err;

	/* group->field */
	if (!BN_copy(&group->field, p)) goto err;
195
	BN_set_negative(&group->field, 0);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	/* group->a */
	if (!BN_nnmod(tmp_a, a, p, ctx)) goto err;
	if (group->meth->field_encode)
		{ if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; }	
	else
		if (!BN_copy(&group->a, tmp_a)) goto err;
	
	/* group->b */
	if (!BN_nnmod(&group->b, b, p, ctx)) goto err;
	if (group->meth->field_encode)
		if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err;
	
	/* group->a_is_minus3 */
	if (!BN_add_word(tmp_a, 3)) goto err;
	group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));

	ret = 1;

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


223
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
224
	{
225 226 227 228
	int ret = 0;
	BN_CTX *new_ctx = NULL;
	
	if (p != NULL)
229
		{
230
		if (!BN_copy(p, &group->field)) return 0;
231 232
		}

233
	if (a != NULL || b != NULL)
234
		{
235
		if (group->meth->field_decode)
236
			{
237 238 239 240 241 242 243 244 245 246 247 248 249 250
			if (ctx == NULL)
				{
				ctx = new_ctx = BN_CTX_new();
				if (ctx == NULL)
					return 0;
				}
			if (a != NULL)
				{
				if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
				}
			if (b != NULL)
				{
				if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
				}
251
			}
252
		else
253
			{
254 255 256 257 258 259 260 261
			if (a != NULL)
				{
				if (!BN_copy(a, &group->a)) goto err;
				}
			if (b != NULL)
				{
				if (!BN_copy(b, &group->b)) goto err;
				}
262 263
			}
		}
264 265 266 267 268 269 270
	
	ret = 1;
	
 err:
	if (new_ctx)
		BN_CTX_free(new_ctx);
	return ret;
271 272 273
	}


274 275 276 277 278 279
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
	{
	return BN_num_bits(&group->field);
	}


280
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
B
Bodo Möller 已提交
281 282 283 284 285 286 287 288 289 290 291
	{
	int ret = 0;
	BIGNUM *a,*b,*order,*tmp_1,*tmp_2;
	const BIGNUM *p = &group->field;
	BN_CTX *new_ctx = NULL;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			{
292
			ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
B
Bodo Möller 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
			goto err;
			}
		}
	BN_CTX_start(ctx);
	a = BN_CTX_get(ctx);
	b = BN_CTX_get(ctx);
	tmp_1 = BN_CTX_get(ctx);
	tmp_2 = BN_CTX_get(ctx);
	order = BN_CTX_get(ctx);
	if (order == NULL) goto err;

	if (group->meth->field_decode)
		{
		if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err;
		if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err;
		}
	else
		{
		if (!BN_copy(a, &group->a)) goto err;
		if (!BN_copy(b, &group->b)) goto err;
		}
	
	/* check the discriminant:
	 * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) 
         * 0 =< a, b < p */
	if (BN_is_zero(a))
		{
320
		if (BN_is_zero(b)) goto err;
B
Bodo Möller 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333
		}
	else if (!BN_is_zero(b))
		{
		if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err;
		if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err;
		if (!BN_lshift(tmp_1, tmp_2, 2)) goto err;
		/* tmp_1 = 4*a^3 */

		if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err;
		if (!BN_mul_word(tmp_2, 27)) goto err;
		/* tmp_2 = 27*b^2 */

		if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err;
334
		if (BN_is_zero(a)) goto err;
B
Bodo Möller 已提交
335 336 337 338
		}
	ret = 1;

err:
339 340
	if (ctx != NULL)
		BN_CTX_end(ctx);
B
Bodo Möller 已提交
341 342 343 344 345 346
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
int ec_GFp_simple_point_init(EC_POINT *point)
	{
	BN_init(&point->X);
	BN_init(&point->Y);
	BN_init(&point->Z);
	point->Z_is_one = 0;

	return 1;
	}


void ec_GFp_simple_point_finish(EC_POINT *point)
	{
	BN_free(&point->X);
	BN_free(&point->Y);
	BN_free(&point->Z);
	}


void ec_GFp_simple_point_clear_finish(EC_POINT *point)
	{
	BN_clear_free(&point->X);
	BN_clear_free(&point->Y);
	BN_clear_free(&point->Z);
	point->Z_is_one = 0;
	}


int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
	{
	if (!BN_copy(&dest->X, &src->X)) return 0;
	if (!BN_copy(&dest->Y, &src->Y)) return 0;
	if (!BN_copy(&dest->Z, &src->Z)) return 0;
	dest->Z_is_one = src->Z_is_one;

	return 1;
	}


386 387 388
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
	{
	point->Z_is_one = 0;
389 390
	BN_zero(&point->Z);
	return 1;
391 392 393
	}


B
Bodo Möller 已提交
394
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
395 396 397 398 399 400 401 402 403 404 405
	const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
	int ret = 0;
	
	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}
B
Bodo Möller 已提交
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (x != NULL)
		{
		if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err;
		if (group->meth->field_encode)
			{
			if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err;
			}
		}
	
	if (y != NULL)
		{
		if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err;
		if (group->meth->field_encode)
			{
			if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err;
			}
		}
	
	if (z != NULL)
		{
		int Z_is_one;
B
Bodo Möller 已提交
428

429 430 431 432
		if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err;
		Z_is_one = BN_is_one(&point->Z);
		if (group->meth->field_encode)
			{
433 434 435 436 437 438 439 440
			if (Z_is_one && (group->meth->field_set_to_one != 0))
				{
				if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err;
				}
			else
				{
				if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err;
				}
441 442 443 444 445 446 447 448 449 450 451
			}
		point->Z_is_one = Z_is_one;
		}
	
	ret = 1;
	
 err:
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}
B
Bodo Möller 已提交
452 453


454 455
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
	BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
456 457 458
	{
	BN_CTX *new_ctx = NULL;
	int ret = 0;
459 460
	
	if (group->meth->field_decode != 0)
461 462 463 464 465 466 467 468
		{
		if (ctx == NULL)
			{
			ctx = new_ctx = BN_CTX_new();
			if (ctx == NULL)
				return 0;
			}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		if (x != NULL)
			{
			if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
			}
		if (y != NULL)
			{
			if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
			}
		if (z != NULL)
			{
			if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err;
			}
		}
	else	
		{
		if (x != NULL)
			{
			if (!BN_copy(x, &point->X)) goto err;
			}
		if (y != NULL)
			{
			if (!BN_copy(y, &point->Y)) goto err;
			}
		if (z != NULL)
			{
			if (!BN_copy(z, &point->Z)) goto err;
			}
		}
497
	
498 499
	ret = 1;

500 501 502 503 504 505 506
 err:
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


507
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
508 509 510 511 512
	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
	{
	if (x == NULL || y == NULL)
		{
		/* unlike for projective coordinates, we do not tolerate this */
513
		ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
514 515 516 517 518 519 520
		return 0;
		}

	return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
	}


521
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
522 523 524
	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
525 526
	BIGNUM *Z, *Z_1, *Z_2, *Z_3;
	const BIGNUM *Z_;
527 528 529 530
	int ret = 0;

	if (EC_POINT_is_at_infinity(group, point))
		{
531
		ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		return 0;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	BN_CTX_start(ctx);
	Z = BN_CTX_get(ctx);
	Z_1 = BN_CTX_get(ctx);
	Z_2 = BN_CTX_get(ctx);
	Z_3 = BN_CTX_get(ctx);
	if (Z_3 == NULL) goto err;

	/* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
	
	if (group->meth->field_decode)
		{
		if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err;
554
		Z_ = Z;
555 556 557 558 559 560 561 562
		}
	else
		{
		Z_ = &point->Z;
		}
	
	if (BN_is_one(Z_))
		{
563
		if (group->meth->field_decode)
B
Bodo Möller 已提交
564
			{
565 566 567 568 569 570 571 572
			if (x != NULL)
				{
				if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err;
				}
			if (y != NULL)
				{
				if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err;
				}
B
Bodo Möller 已提交
573
			}
574
		else
B
Bodo Möller 已提交
575
			{
576 577 578 579 580 581 582 583
			if (x != NULL)
				{
				if (!BN_copy(x, &point->X)) goto err;
				}
			if (y != NULL)
				{
				if (!BN_copy(y, &point->Y)) goto err;
				}
B
Bodo Möller 已提交
584
			}
585 586 587 588 589
		}
	else
		{
		if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx))
			{
590
			ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
591 592
			goto err;
			}
593 594 595 596 597 598 599 600 601 602
		
		if (group->meth->field_encode == 0)
			{
			/* field_sqr works on standard representation */
			if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err;
			}
		else
			{
			if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err;
			}
603
	
B
Bodo Möller 已提交
604 605
		if (x != NULL)
			{
606 607
			/* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */
			if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err;
B
Bodo Möller 已提交
608 609 610 611
			}

		if (y != NULL)
			{
612 613 614 615 616 617 618 619 620
			if (group->meth->field_encode == 0)
				{
				/* field_mul works on standard representation */
				if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err;
				}
			else
				{
				if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err;
				}
621 622 623

			/* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */
			if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err;
B
Bodo Möller 已提交
624
			}
625 626 627 628 629 630 631 632 633 634 635 636
		}

	ret = 1;

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


637
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point,
638
	const BIGNUM *x_, int y_bit, BN_CTX *ctx)
639 640
	{
	BN_CTX *new_ctx = NULL;
641
	BIGNUM *tmp1, *tmp2, *x, *y;
642 643
	int ret = 0;

644 645 646
	/* clear error queue*/
	ERR_clear_error();

647 648 649 650 651 652 653 654 655 656 657 658
	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	y_bit = (y_bit != 0);

	BN_CTX_start(ctx);
	tmp1 = BN_CTX_get(ctx);
	tmp2 = BN_CTX_get(ctx);
659
	x = BN_CTX_get(ctx);
660 661 662 663 664 665 666 667 668
	y = BN_CTX_get(ctx);
	if (y == NULL) goto err;

	/* Recover y.  We have a Weierstrass equation
	 *     y^2 = x^3 + a*x + b,
	 * so  y  is one of the square roots of  x^3 + a*x + b.
	 */

	/* tmp1 := x^3 */
669 670 671 672 673 674 675 676 677 678 679 680
	if (!BN_nnmod(x, x_, &group->field,ctx)) goto err;
	if (group->meth->field_decode == 0)
		{
		/* field_{sqr,mul} work on standard representation */
		if (!group->meth->field_sqr(group, tmp2, x_, ctx)) goto err;
		if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) goto err;
		}
	else
		{
		if (!BN_mod_sqr(tmp2, x_, &group->field, ctx)) goto err;
		if (!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) goto err;
		}
681 682 683 684 685 686 687 688 689 690
	
	/* tmp1 := tmp1 + a*x */
	if (group->a_is_minus3)
		{
		if (!BN_mod_lshift1_quick(tmp2, x, &group->field)) goto err;
		if (!BN_mod_add_quick(tmp2, tmp2, x, &group->field)) goto err;
		if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) goto err;
		}
	else
		{
B
Bodo Möller 已提交
691 692 693 694 695 696 697
		if (group->meth->field_decode)
			{
			if (!group->meth->field_decode(group, tmp2, &group->a, ctx)) goto err;
			if (!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) goto err;
			}
		else
			{
698 699
			/* field_mul works on standard representation */
			if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) goto err;
B
Bodo Möller 已提交
700 701
			}
		
702 703 704 705
		if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err;
		}
	
	/* tmp1 := tmp1 + b */
B
Bodo Möller 已提交
706 707 708 709 710 711 712 713 714
	if (group->meth->field_decode)
		{
		if (!group->meth->field_decode(group, tmp2, &group->b, ctx)) goto err;
		if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err;
		}
	else
		{
		if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) goto err;
		}
715 716 717
	
	if (!BN_mod_sqrt(y, tmp1, &group->field, ctx))
		{
718
		unsigned long err = ERR_peek_last_error();
719 720 721
		
		if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE)
			{
722
			ERR_clear_error();
723
			ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT);
724 725
			}
		else
726
			ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB);
727 728 729 730 731 732 733 734 735 736 737 738 739
		goto err;
		}

	if (y_bit != BN_is_odd(y))
		{
		if (BN_is_zero(y))
			{
			int kron;

			kron = BN_kronecker(x, &group->field, ctx);
			if (kron == -2) goto err;

			if (kron == 1)
740
				ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT);
741
			else
742
				/* BN_mod_sqrt() should have cought this error (not a square) */
743
				ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT);
744 745 746 747 748 749
			goto err;
			}
		if (!BN_usub(y, &group->field, y)) goto err;
		}
	if (y_bit != BN_is_odd(y))
		{
750
		ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_INTERNAL_ERROR);
751 752 753 754 755 756 757 758 759 760 761 762 763
		goto err;
		}

	if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;

	ret = 1;

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}
764 765 766


size_t ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form,
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	unsigned char *buf, size_t len, BN_CTX *ctx)
	{
	size_t ret;
	BN_CTX *new_ctx = NULL;
	int used_ctx = 0;
	BIGNUM *x, *y;
	size_t field_len, i, skip;

	if ((form != POINT_CONVERSION_COMPRESSED)
		&& (form != POINT_CONVERSION_UNCOMPRESSED)
		&& (form != POINT_CONVERSION_HYBRID))
		{
		ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_INVALID_FORM);
		goto err;
		}

	if (EC_POINT_is_at_infinity(group, point))
		{
		/* encodes to a single 0 octet */
		if (buf != NULL)
			{
			if (len < 1)
				{
				ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
				return 0;
				}
			buf[0] = 0;
			}
		return 1;
		}


	/* ret := required output buffer length */
	field_len = BN_num_bytes(&group->field);
	ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;

	/* if 'buf' is NULL, just return required length */
	if (buf != NULL)
		{
		if (len < ret)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
			goto err;
			}

		if (ctx == NULL)
			{
			ctx = new_ctx = BN_CTX_new();
			if (ctx == NULL)
				return 0;
			}

		BN_CTX_start(ctx);
		used_ctx = 1;
		x = BN_CTX_get(ctx);
		y = BN_CTX_get(ctx);
		if (y == NULL) goto err;

		if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;

B
Bodo Möller 已提交
827
		if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y))
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
			buf[0] = form + 1;
		else
			buf[0] = form;
	
		i = 1;
		
		skip = field_len - BN_num_bytes(x);
		if (skip > field_len)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
			goto err;
			}
		while (skip > 0)
			{
			buf[i++] = 0;
			skip--;
			}
		skip = BN_bn2bin(x, buf + i);
		i += skip;
		if (i != 1 + field_len)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
			goto err;
			}

		if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID)
			{
			skip = field_len - BN_num_bytes(y);
			if (skip > field_len)
				{
				ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
				goto err;
				}
			while (skip > 0)
				{
				buf[i++] = 0;
				skip--;
				}
			skip = BN_bn2bin(y, buf + i);
			i += skip;
			}

		if (i != ret)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR);
			goto err;
			}
		}
	
	if (used_ctx)
		BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;

 err:
	if (used_ctx)
		BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return 0;
	}
890 891 892


int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
893 894 895 896 897 898 899 900 901
	const unsigned char *buf, size_t len, BN_CTX *ctx)
	{
	point_conversion_form_t form;
	int y_bit;
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y;
	size_t field_len, enc_len;
	int ret = 0;

902
	if (len == 0)
903 904 905 906 907 908
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL);
		return 0;
		}
	form = buf[0];
	y_bit = form & 1;
909
	form = form & ~1U;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	if ((form != 0)	&& (form != POINT_CONVERSION_COMPRESSED)
		&& (form != POINT_CONVERSION_UNCOMPRESSED)
		&& (form != POINT_CONVERSION_HYBRID))
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
		return 0;
		}
	if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit)
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
		return 0;
		}

	if (form == 0)
		{
		if (len != 1)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
			return 0;
			}

		return EC_POINT_set_to_infinity(group, point);
		}
	
	field_len = BN_num_bytes(&group->field);
	enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len;

	if (len != enc_len)
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
		return 0;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	BN_CTX_start(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto err;

	if (!BN_bin2bn(buf + 1, field_len, x)) goto err;
	if (BN_ucmp(x, &group->field) >= 0)
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
		goto err;
		}

962 963 964 965 966
	if (form == POINT_CONVERSION_COMPRESSED)
		{
		if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) goto err;
		}
	else
967 968 969 970 971 972 973 974 975
		{
		if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err;
		if (BN_ucmp(y, &group->field) >= 0)
			{
			ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
			goto err;
			}
		if (form == POINT_CONVERSION_HYBRID)
			{
B
Bodo Möller 已提交
976
			if (y_bit != BN_is_odd(y))
977 978 979 980 981 982
				{
				ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING);
				goto err;
				}
			}

983
		if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		}
	
	if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */
		{
		ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE);
		goto err;
		}

	ret = 1;
	
 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028


int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
	{
	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
	const BIGNUM *p;
	BN_CTX *new_ctx = NULL;
	BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
	int ret = 0;
	
	if (a == b)
		return EC_POINT_dbl(group, r, a, ctx);
	if (EC_POINT_is_at_infinity(group, a))
		return EC_POINT_copy(r, b);
	if (EC_POINT_is_at_infinity(group, b))
		return EC_POINT_copy(r, a);
	
	field_mul = group->meth->field_mul;
	field_sqr = group->meth->field_sqr;
	p = &group->field;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

1029
	BN_CTX_start(ctx);
1030 1031 1032 1033 1034 1035 1036 1037 1038
	n0 = BN_CTX_get(ctx);
	n1 = BN_CTX_get(ctx);
	n2 = BN_CTX_get(ctx);
	n3 = BN_CTX_get(ctx);
	n4 = BN_CTX_get(ctx);
	n5 = BN_CTX_get(ctx);
	n6 = BN_CTX_get(ctx);
	if (n6 == NULL) goto end;

B
Bodo Möller 已提交
1039 1040 1041 1042 1043
	/* Note that in this function we must not read components of 'a' or 'b'
	 * once we have written the corresponding components of 'r'.
	 * ('r' might be one of 'a' or 'b'.)
	 */

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	/* n1, n2 */
	if (b->Z_is_one)
		{
		if (!BN_copy(n1, &a->X)) goto end;
		if (!BN_copy(n2, &a->Y)) goto end;
		/* n1 = X_a */
		/* n2 = Y_a */
		}
	else
		{
		if (!field_sqr(group, n0, &b->Z, ctx)) goto end;
		if (!field_mul(group, n1, &a->X, n0, ctx)) goto end;
		/* n1 = X_a * Z_b^2 */

		if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end;
		if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end;
		/* n2 = Y_a * Z_b^3 */
		}

	/* n3, n4 */
	if (a->Z_is_one)
		{
		if (!BN_copy(n3, &b->X)) goto end;
		if (!BN_copy(n4, &b->Y)) goto end;
		/* n3 = X_b */
		/* n4 = Y_b */
		}
	else
		{
		if (!field_sqr(group, n0, &a->Z, ctx)) goto end;
		if (!field_mul(group, n3, &b->X, n0, ctx)) goto end;
		/* n3 = X_b * Z_a^2 */

		if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end;
		if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end;
		/* n4 = Y_b * Z_a^3 */
		}

	/* n5, n6 */
	if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end;
	if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end;
	/* n5 = n1 - n3 */
	/* n6 = n2 - n4 */

	if (BN_is_zero(n5))
		{
		if (BN_is_zero(n6))
			{
			/* a is the same point as b */
			BN_CTX_end(ctx);
			ret = EC_POINT_dbl(group, r, a, ctx);
B
Bodo Möller 已提交
1095
			ctx = NULL;
1096 1097 1098 1099 1100
			goto end;
			}
		else
			{
			/* a is the inverse of b */
1101
			BN_zero(&r->Z);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			r->Z_is_one = 0;
			ret = 1;
			goto end;
			}
		}

	/* 'n7', 'n8' */
	if (!BN_mod_add_quick(n1, n1, n3, p)) goto end;
	if (!BN_mod_add_quick(n2, n2, n4, p)) goto end;
	/* 'n7' = n1 + n3 */
	/* 'n8' = n2 + n4 */

	/* Z_r */
	if (a->Z_is_one && b->Z_is_one)
		{
		if (!BN_copy(&r->Z, n5)) goto end;
		}
	else
		{
		if (a->Z_is_one)
			{ if (!BN_copy(n0, &b->Z)) goto end; }
		else if (b->Z_is_one)
			{ if (!BN_copy(n0, &a->Z)) goto end; }
		else
			{ if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; }
		if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end;
		}
	r->Z_is_one = 0;
	/* Z_r = Z_a * Z_b * n5 */

	/* X_r */
	if (!field_sqr(group, n0, n6, ctx)) goto end;
	if (!field_sqr(group, n4, n5, ctx)) goto end;
	if (!field_mul(group, n3, n1, n4, ctx)) goto end;
	if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end;
	/* X_r = n6^2 - n5^2 * 'n7' */
	
	/* 'n9' */
	if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end;
	if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end;
	/* n9 = n5^2 * 'n7' - 2 * X_r */

	/* Y_r */
	if (!field_mul(group, n0, n0, n6, ctx)) goto end;
	if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */
	if (!field_mul(group, n1, n2, n5, ctx)) goto end;
	if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end;
	if (BN_is_odd(n0))
		if (!BN_add(n0, n0, p)) goto end;
	/* now  0 <= n0 < 2*p,  and n0 is even */
	if (!BN_rshift1(&r->Y, n0)) goto end;
	/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */

	ret = 1;

 end:
	if (ctx) /* otherwise we already called BN_CTX_end */
		BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
	{
	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
	const BIGNUM *p;
	BN_CTX *new_ctx = NULL;
	BIGNUM *n0, *n1, *n2, *n3;
	int ret = 0;
	
	if (EC_POINT_is_at_infinity(group, a))
		{
1177
		BN_zero(&r->Z);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		r->Z_is_one = 0;
		return 1;
		}

	field_mul = group->meth->field_mul;
	field_sqr = group->meth->field_sqr;
	p = &group->field;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

1193
	BN_CTX_start(ctx);
1194 1195 1196 1197 1198 1199
	n0 = BN_CTX_get(ctx);
	n1 = BN_CTX_get(ctx);
	n2 = BN_CTX_get(ctx);
	n3 = BN_CTX_get(ctx);
	if (n3 == NULL) goto err;

B
Bodo Möller 已提交
1200 1201 1202 1203 1204
	/* Note that in this function we must not read components of 'a'
	 * once we have written the corresponding components of 'r'.
	 * ('r' might the same as 'a'.)
	 */

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	/* n1 */
	if (a->Z_is_one)
		{
		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
		if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err;
		/* n1 = 3 * X_a^2 + a_curve */
		}
	else if (group->a_is_minus3)
		{
		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
		if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err;
		if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err;
		if (!field_mul(group, n1, n0, n2, ctx)) goto err;
		if (!BN_mod_lshift1_quick(n0, n1, p)) goto err;
		if (!BN_mod_add_quick(n1, n0, n1, p)) goto err;
		/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
		 *    = 3 * X_a^2 - 3 * Z_a^4 */
		}
	else
		{
		if (!field_sqr(group, n0, &a->X, ctx)) goto err;
		if (!BN_mod_lshift1_quick(n1, n0, p)) goto err;
		if (!BN_mod_add_quick(n0, n0, n1, p)) goto err;
		if (!field_sqr(group, n1, &a->Z, ctx)) goto err;
		if (!field_sqr(group, n1, n1, ctx)) goto err;
		if (!field_mul(group, n1, n1, &group->a, ctx)) goto err;
		if (!BN_mod_add_quick(n1, n1, n0, p)) goto err;
		/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
		}

	/* Z_r */
	if (a->Z_is_one)
		{
		if (!BN_copy(n0, &a->Y)) goto err;
		}
	else
		{
		if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err;
		}
	if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err;
	r->Z_is_one = 0;
	/* Z_r = 2 * Y_a * Z_a */

	/* n2 */
	if (!field_sqr(group, n3, &a->Y, ctx)) goto err;
	if (!field_mul(group, n2, &a->X, n3, ctx)) goto err;
	if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err;
	/* n2 = 4 * X_a * Y_a^2 */

	/* X_r */
	if (!BN_mod_lshift1_quick(n0, n2, p)) goto err;
	if (!field_sqr(group, &r->X, n1, ctx)) goto err;
	if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err;
	/* X_r = n1^2 - 2 * n2 */
	
	/* n3 */
	if (!field_sqr(group, n0, n3, ctx)) goto err;
	if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err;
	/* n3 = 8 * Y_a^4 */
	
	/* Y_r */
	if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err;
	if (!field_mul(group, n0, n1, n0, ctx)) goto err;
	if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err;
	/* Y_r = n1 * (n2 - X_r) - n3 */

	ret = 1;

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


1283 1284 1285 1286 1287 1288 1289 1290
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
	{
	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
		/* point is its own inverse */
		return 1;
	
	return BN_usub(&point->Y, &group->field, &point->Y);
	}
B
Bodo Möller 已提交
1291 1292


1293 1294 1295 1296 1297 1298
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
	{
	return BN_is_zero(&point->Z);
	}


B
Bodo Möller 已提交
1299 1300 1301 1302 1303 1304
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
	{
	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
	const BIGNUM *p;
	BN_CTX *new_ctx = NULL;
1305
	BIGNUM *rh, *tmp, *Z4, *Z6;
B
Bodo Möller 已提交
1306
	int ret = -1;
1307

B
Bodo Möller 已提交
1308 1309 1310 1311 1312 1313
	if (EC_POINT_is_at_infinity(group, point))
		return 1;
	
	field_mul = group->meth->field_mul;
	field_sqr = group->meth->field_sqr;
	p = &group->field;
1314

B
Bodo Möller 已提交
1315 1316 1317 1318
	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
1319
			return -1;
B
Bodo Möller 已提交
1320 1321
		}

1322
	BN_CTX_start(ctx);
B
Bodo Möller 已提交
1323
	rh = BN_CTX_get(ctx);
1324
	tmp = BN_CTX_get(ctx);
B
Bodo Möller 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	Z4 = BN_CTX_get(ctx);
	Z6 = BN_CTX_get(ctx);
	if (Z6 == NULL) goto err;

	/* We have a curve defined by a Weierstrass equation
	 *      y^2 = x^3 + a*x + b.
	 * The point to consider is given in Jacobian projective coordinates
	 * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
	 * Substituting this and multiplying by  Z^6  transforms the above equation into
	 *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
	 * To test this, we add up the right-hand side in 'rh'.
	 */

1338
	/* rh := X^2 */
B
Bodo Möller 已提交
1339 1340 1341 1342
	if (!field_sqr(group, rh, &point->X, ctx)) goto err;

	if (!point->Z_is_one)
		{
1343 1344 1345
		if (!field_sqr(group, tmp, &point->Z, ctx)) goto err;
		if (!field_sqr(group, Z4, tmp, ctx)) goto err;
		if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err;
B
Bodo Möller 已提交
1346

1347
		/* rh := (rh + a*Z^4)*X */
1348
		if (group->a_is_minus3)
B
Bodo Möller 已提交
1349
			{
1350 1351 1352 1353
			if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err;
			if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err;
			if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err;
			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
B
Bodo Möller 已提交
1354 1355 1356
			}
		else
			{
1357 1358 1359
			if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err;
			if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
			if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
B
Bodo Möller 已提交
1360 1361 1362
			}

		/* rh := rh + b*Z^6 */
1363 1364
		if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err;
		if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err;
B
Bodo Möller 已提交
1365 1366 1367 1368 1369
		}
	else
		{
		/* point->Z_is_one */

1370 1371 1372
		/* rh := (rh + a)*X */
		if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err;
		if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
B
Bodo Möller 已提交
1373 1374 1375 1376 1377
		/* rh := rh + b */
		if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err;
		}

	/* 'lh' := Y^2 */
1378
	if (!field_sqr(group, tmp, &point->Y, ctx)) goto err;
B
Bodo Möller 已提交
1379

1380
	ret = (0 == BN_ucmp(tmp, rh));
B
Bodo Möller 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
	{
	/* return values:
	 *  -1   error
	 *   0   equal (in affine coordinates)
	 *   1   not equal
	 */

	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
	BN_CTX *new_ctx = NULL;
	BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
	const BIGNUM *tmp1_, *tmp2_;
	int ret = -1;
	
	if (EC_POINT_is_at_infinity(group, a))
		{
		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
		}
	
	if (a->Z_is_one && b->Z_is_one)
		{
		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
		}

	field_mul = group->meth->field_mul;
	field_sqr = group->meth->field_sqr;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return -1;
		}

	BN_CTX_start(ctx);
	tmp1 = BN_CTX_get(ctx);
	tmp2 = BN_CTX_get(ctx);
	Za23 = BN_CTX_get(ctx);
	Zb23 = BN_CTX_get(ctx);
	if (Zb23 == NULL) goto end;

	/* We have to decide whether
	 *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
	 * or equivalently, whether
	 *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
	 */

	if (!b->Z_is_one)
		{
		if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end;
		if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end;
		tmp1_ = tmp1;
		}
	else
		tmp1_ = &a->X;
	if (!a->Z_is_one)
		{
		if (!field_sqr(group, Za23, &a->Z, ctx)) goto end;
		if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end;
		tmp2_ = tmp2;
		}
	else
		tmp2_ = &b->X;
	
	/* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
	if (BN_cmp(tmp1_, tmp2_) != 0)
		{
		ret = 1; /* points differ */
		goto end;
		}


	if (!b->Z_is_one)
		{
		if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end;
		if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end;
B
Bodo Möller 已提交
1467
		/* tmp1_ = tmp1 */
1468
		}
B
Bodo Möller 已提交
1469 1470
	else
		tmp1_ = &a->Y;
1471 1472 1473 1474
	if (!a->Z_is_one)
		{
		if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end;
		if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end;
B
Bodo Möller 已提交
1475
		/* tmp2_ = tmp2 */
1476
		}
B
Bodo Möller 已提交
1477 1478
	else
		tmp2_ = &b->Y;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	/* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
	if (BN_cmp(tmp1_, tmp2_) != 0)
		{
		ret = 1; /* points differ */
		goto end;
		}

	/* points are equal */
	ret = 0;

 end:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}
B
Bodo Möller 已提交
1496 1497


B
Bodo Möller 已提交
1498 1499 1500
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
1501
	BIGNUM *x, *y;
B
Bodo Möller 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	int ret = 0;

	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
		return 1;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

1514 1515 1516 1517
	BN_CTX_start(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto err;
B
Bodo Möller 已提交
1518

1519 1520 1521
	if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
	if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err;
	if (!point->Z_is_one)
B
Bodo Möller 已提交
1522
		{
1523 1524
		ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
		goto err;
B
Bodo Möller 已提交
1525 1526 1527 1528
		}
	
	ret = 1;

1529
 err:
B
Bodo Möller 已提交
1530 1531 1532 1533 1534
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}
1535 1536


1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
	BIGNUM *tmp0, *tmp1;
	size_t pow2 = 0;
	BIGNUM **heap = NULL;
	size_t i;
	int ret = 0;

	if (num == 0)
		return 1;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	BN_CTX_start(ctx);
	tmp0 = BN_CTX_get(ctx);
	tmp1 = BN_CTX_get(ctx);
	if (tmp0  == NULL || tmp1 == NULL) goto err;

	/* Before converting the individual points, compute inverses of all Z values.
	 * Modular inversion is rather slow, but luckily we can do with a single
	 * explicit inversion, plus about 3 multiplications per input value.
	 */

	pow2 = 1;
	while (num > pow2)
		pow2 <<= 1;
	/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
	 * We need twice that. */
	pow2 <<= 1;

	heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
	if (heap == NULL) goto err;
	
	/* The array is used as a binary tree, exactly as in heapsort:
	 *
	 *                               heap[1]
	 *                 heap[2]                     heap[3]
	 *          heap[4]       heap[5]       heap[6]       heap[7]
	 *   heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
	 *
	 * We put the Z's in the last line;
	 * then we set each other node to the product of its two child-nodes (where
	 * empty or 0 entries are treated as ones);
	 * then we invert heap[1];
	 * then we invert each other node by replacing it by the product of its
	 * parent (after inversion) and its sibling (before inversion).
	 */
	heap[0] = NULL;
	for (i = pow2/2 - 1; i > 0; i--)
		heap[i] = NULL;
	for (i = 0; i < num; i++)
		heap[pow2/2 + i] = &points[i]->Z;
	for (i = pow2/2 + num; i < pow2; i++)
		heap[i] = NULL;
	
	/* set each node to the product of its children */
	for (i = pow2/2 - 1; i > 0; i--)
		{
		heap[i] = BN_new();
		if (heap[i] == NULL) goto err;
		
		if (heap[2*i] != NULL)
			{
			if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
				{
				if (!BN_copy(heap[i], heap[2*i])) goto err;
				}
			else
				{
				if (BN_is_zero(heap[2*i]))
					{
					if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
					}
				else
					{
					if (!group->meth->field_mul(group, heap[i],
						heap[2*i], heap[2*i + 1], ctx)) goto err;
					}
				}
			}
		}

	/* invert heap[1] */
	if (!BN_is_zero(heap[1]))
		{
		if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
			{
			ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
			goto err;
			}
		}
	if (group->meth->field_encode != 0)
		{
		/* in the Montgomery case, we just turned  R*H  (representing H)
		 * into  1/(R*H),  but we need  R*(1/H)  (representing 1/H);
		 * i.e. we have need to multiply by the Montgomery factor twice */
		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
		if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
		}

	/* set other heap[i]'s to their inverses */
	for (i = 2; i < pow2/2 + num; i += 2)
		{
		/* i is even */
		if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
			{
			if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
			if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
			if (!BN_copy(heap[i], tmp0)) goto err;
			if (!BN_copy(heap[i + 1], tmp1)) goto err;
			}
		else
			{
			if (!BN_copy(heap[i], heap[i/2])) goto err;
			}
		}

	/* we have replaced all non-zero Z's by their inverses, now fix up all the points */
	for (i = 0; i < num; i++)
		{
		EC_POINT *p = points[i];
		
		if (!BN_is_zero(&p->Z))
			{
			/* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */

			if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
			if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;

			if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
			if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
		
			if (group->meth->field_set_to_one != 0)
				{
				if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
				}
			else
				{
				if (!BN_one(&p->Z)) goto err;
				}
			p->Z_is_one = 1;
			}
		}

	ret = 1;
		
 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (heap != NULL)
		{
		/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
		for (i = pow2/2 - 1; i > 0; i--)
			{
			if (heap[i] != NULL)
				BN_clear_free(heap[i]);
			}
		OPENSSL_free(heap);
		}
	return ret;
	}


1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	return BN_mod_mul(r, a, b, &group->field, ctx);
	}


int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
	{
	return BN_mod_sqr(r, a, &group->field, ctx);
	}