e_aes_cbc_hmac_sha256.c 31.9 KB
Newer Older
A
Andy Polyakov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* ====================================================================
 * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 */

#include <openssl/opensslconf.h>

#include <stdio.h>
#include <string.h>

R
Rich Salz 已提交
55
#if !defined(OPENSSL_NO_AES)
A
Andy Polyakov 已提交
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# include <openssl/evp.h>
# include <openssl/objects.h>
# include <openssl/aes.h>
# include <openssl/sha.h>
# include <openssl/rand.h>
# include "modes_lcl.h"

# ifndef EVP_CIPH_FLAG_AEAD_CIPHER
#  define EVP_CIPH_FLAG_AEAD_CIPHER       0x200000
#  define EVP_CTRL_AEAD_TLS1_AAD          0x16
#  define EVP_CTRL_AEAD_SET_MAC_KEY       0x17
# endif

# if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
#  define EVP_CIPH_FLAG_DEFAULT_ASN1 0
# endif

# if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
#  define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
# endif

# define TLS1_1_VERSION 0x0302

typedef struct {
    AES_KEY ks;
    SHA256_CTX head, tail, md;
    size_t payload_length;      /* AAD length in decrypt case */
A
Andy Polyakov 已提交
84
    union {
85 86
        unsigned int tls_ver;
        unsigned char tls_aad[16]; /* 13 used */
A
Andy Polyakov 已提交
87
    } aux;
88
} EVP_AES_HMAC_SHA256;
A
Andy Polyakov 已提交
89

90
# define NO_PAYLOAD_LENGTH       ((size_t)-1)
A
Andy Polyakov 已提交
91

92 93 94 95
# if     defined(AES_ASM) &&     ( \
        defined(__x86_64)       || defined(__x86_64__)  || \
        defined(_M_AMD64)       || defined(_M_X64)      || \
        defined(__INTEL__)      )
A
Andy Polyakov 已提交
96 97

extern unsigned int OPENSSL_ia32cap_P[3];
98
#  define AESNI_CAPABLE   (1<<(57-32))
A
Andy Polyakov 已提交
99 100

int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
101
                          AES_KEY *key);
A
Andy Polyakov 已提交
102
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
103
                          AES_KEY *key);
A
Andy Polyakov 已提交
104 105

void aesni_cbc_encrypt(const unsigned char *in,
106 107 108
                       unsigned char *out,
                       size_t length,
                       const AES_KEY *key, unsigned char *ivec, int enc);
A
Andy Polyakov 已提交
109

110 111 112
int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
                         const AES_KEY *key, unsigned char iv[16],
                         SHA256_CTX *ctx, const void *in0);
A
Andy Polyakov 已提交
113

114
#  define data(ctx) ((EVP_AES_HMAC_SHA256 *)(ctx)->cipher_data)
A
Andy Polyakov 已提交
115 116

static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
117 118 119 120 121
                                          const unsigned char *inkey,
                                          const unsigned char *iv, int enc)
{
    EVP_AES_HMAC_SHA256 *key = data(ctx);
    int ret;
A
Andy Polyakov 已提交
122

123 124 125 126 127
    if (enc)
        memset(&key->ks, 0, sizeof(key->ks.rd_key)),
            ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
    else
        ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
A
Andy Polyakov 已提交
128

129 130 131
    SHA256_Init(&key->head);    /* handy when benchmarking */
    key->tail = key->head;
    key->md = key->head;
A
Andy Polyakov 已提交
132

133
    key->payload_length = NO_PAYLOAD_LENGTH;
A
Andy Polyakov 已提交
134

135 136
    return ret < 0 ? 0 : 1;
}
A
Andy Polyakov 已提交
137

138
#  define STITCHED_CALL
A
Andy Polyakov 已提交
139

140 141 142
#  if !defined(STITCHED_CALL)
#   define aes_off 0
#  endif
A
Andy Polyakov 已提交
143

144
void sha256_block_data_order(void *c, const void *p, size_t len);
A
Andy Polyakov 已提交
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
{
    const unsigned char *ptr = data;
    size_t res;

    if ((res = c->num)) {
        res = SHA256_CBLOCK - res;
        if (len < res)
            res = len;
        SHA256_Update(c, ptr, res);
        ptr += res;
        len -= res;
    }

    res = len % SHA256_CBLOCK;
    len -= res;

    if (len) {
        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);

        ptr += len;
        c->Nh += len >> 29;
        c->Nl += len <<= 3;
        if (c->Nl < (unsigned int)len)
            c->Nh++;
    }

    if (res)
        SHA256_Update(c, ptr, res);
A
Andy Polyakov 已提交
175 176
}

177 178 179 180
#  ifdef SHA256_Update
#   undef SHA256_Update
#  endif
#  define SHA256_Update sha256_update
A
Andy Polyakov 已提交
181

182
#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
183

184 185 186 187 188 189 190
typedef struct {
    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
} SHA256_MB_CTX;
typedef struct {
    const unsigned char *ptr;
    int blocks;
} HASH_DESC;
191

192
void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
193

194 195 196 197 198 199
typedef struct {
    const unsigned char *inp;
    unsigned char *out;
    int blocks;
    u64 iv[2];
} CIPH_DESC;
200

201
void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
202

203
static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                                         unsigned char *out,
                                         const unsigned char *inp,
                                         size_t inp_len, int n4x)
{                               /* n4x is 1 or 2 */
    HASH_DESC hash_d[8], edges[8];
    CIPH_DESC ciph_d[8];
    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
    union {
        u64 q[16];
        u32 d[32];
        u8 c[128];
    } blocks[8];
    SHA256_MB_CTX *ctx;
    unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
        0;
    size_t ret = 0;
    u8 *IVs;
#   if defined(BSWAP8)
    u64 seqnum;
#   endif

    /* ask for IVs in bulk */
    if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
        return 0;

    /* align */
    ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));

    frag = (unsigned int)inp_len >> (1 + n4x);
    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
        frag++;
        last -= x4 - 1;
    }

    packlen = 5 + 16 + ((frag + 32 + 16) & -16);

    /* populate descriptors with pointers and IVs */
    hash_d[0].ptr = inp;
    ciph_d[0].inp = inp;
    /* 5+16 is place for header and explicit IV */
    ciph_d[0].out = out + 5 + 16;
    memcpy(ciph_d[0].out - 16, IVs, 16);
    memcpy(ciph_d[0].iv, IVs, 16);
    IVs += 16;

    for (i = 1; i < x4; i++) {
        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
        ciph_d[i].out = ciph_d[i - 1].out + packlen;
        memcpy(ciph_d[i].out - 16, IVs, 16);
        memcpy(ciph_d[i].iv, IVs, 16);
        IVs += 16;
    }

#   if defined(BSWAP8)
    memcpy(blocks[0].c, key->md.data, 8);
    seqnum = BSWAP8(blocks[0].q[0]);
#   endif
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag);
#   if !defined(BSWAP8)
        unsigned int carry, j;
#   endif

        ctx->A[i] = key->md.h[0];
        ctx->B[i] = key->md.h[1];
        ctx->C[i] = key->md.h[2];
        ctx->D[i] = key->md.h[3];
        ctx->E[i] = key->md.h[4];
        ctx->F[i] = key->md.h[5];
        ctx->G[i] = key->md.h[6];
        ctx->H[i] = key->md.h[7];

        /* fix seqnum */
#   if defined(BSWAP8)
        blocks[i].q[0] = BSWAP8(seqnum + i);
#   else
        for (carry = i, j = 8; j--;) {
            blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
        }
#   endif
        blocks[i].c[8] = ((u8 *)key->md.data)[8];
        blocks[i].c[9] = ((u8 *)key->md.data)[9];
        blocks[i].c[10] = ((u8 *)key->md.data)[10];
        /* fix length */
        blocks[i].c[11] = (u8)(len >> 8);
        blocks[i].c[12] = (u8)(len);

        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
        hash_d[i].ptr += 64 - 13;
        hash_d[i].blocks = (len - (64 - 13)) / 64;

        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* hash 13-byte headers and first 64-13 bytes of inputs */
    sha256_multi_block(ctx, edges, n4x);
    /* hash bulk inputs */
#   define MAXCHUNKSIZE    2048
#   if     MAXCHUNKSIZE%64
#    error  "MAXCHUNKSIZE is not divisible by 64"
#   elif   MAXCHUNKSIZE
    /*
     * goal is to minimize pressure on L1 cache by moving in shorter steps,
     * so that hashed data is still in the cache by the time we encrypt it
     */
    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
    if (minblocks > MAXCHUNKSIZE / 64) {
        for (i = 0; i < x4; i++) {
            edges[i].ptr = hash_d[i].ptr;
            edges[i].blocks = MAXCHUNKSIZE / 64;
            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
        }
        do {
            sha256_multi_block(ctx, edges, n4x);
            aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);

            for (i = 0; i < x4; i++) {
                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
                edges[i].blocks = MAXCHUNKSIZE / 64;
                ciph_d[i].inp += MAXCHUNKSIZE;
                ciph_d[i].out += MAXCHUNKSIZE;
                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
            }
            processed += MAXCHUNKSIZE;
            minblocks -= MAXCHUNKSIZE / 64;
        } while (minblocks > MAXCHUNKSIZE / 64);
    }
#   endif
#   undef  MAXCHUNKSIZE
    sha256_multi_block(ctx, hash_d, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag),
            off = hash_d[i].blocks * 64;
        const unsigned char *ptr = hash_d[i].ptr + off;

        off = (len - processed) - (64 - 13) - off; /* remainder actually */
        memcpy(blocks[i].c, ptr, off);
        blocks[i].c[off] = 0x80;
        len += 64 + 13;         /* 64 is HMAC header */
        len *= 8;               /* convert to bits */
        if (off < (64 - 8)) {
#   ifdef BSWAP4
            blocks[i].d[15] = BSWAP4(len);
#   else
            PUTU32(blocks[i].c + 60, len);
#   endif
            edges[i].blocks = 1;
        } else {
#   ifdef BSWAP4
            blocks[i].d[31] = BSWAP4(len);
#   else
            PUTU32(blocks[i].c + 124, len);
#   endif
            edges[i].blocks = 2;
        }
        edges[i].ptr = blocks[i].c;
    }

    /* hash input tails and finalize */
    sha256_multi_block(ctx, edges, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
#   ifdef BSWAP4
        blocks[i].d[0] = BSWAP4(ctx->A[i]);
        ctx->A[i] = key->tail.h[0];
        blocks[i].d[1] = BSWAP4(ctx->B[i]);
        ctx->B[i] = key->tail.h[1];
        blocks[i].d[2] = BSWAP4(ctx->C[i]);
        ctx->C[i] = key->tail.h[2];
        blocks[i].d[3] = BSWAP4(ctx->D[i]);
        ctx->D[i] = key->tail.h[3];
        blocks[i].d[4] = BSWAP4(ctx->E[i]);
        ctx->E[i] = key->tail.h[4];
        blocks[i].d[5] = BSWAP4(ctx->F[i]);
        ctx->F[i] = key->tail.h[5];
        blocks[i].d[6] = BSWAP4(ctx->G[i]);
        ctx->G[i] = key->tail.h[6];
        blocks[i].d[7] = BSWAP4(ctx->H[i]);
        ctx->H[i] = key->tail.h[7];
        blocks[i].c[32] = 0x80;
        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
#   else
        PUTU32(blocks[i].c + 0, ctx->A[i]);
        ctx->A[i] = key->tail.h[0];
        PUTU32(blocks[i].c + 4, ctx->B[i]);
        ctx->B[i] = key->tail.h[1];
        PUTU32(blocks[i].c + 8, ctx->C[i]);
        ctx->C[i] = key->tail.h[2];
        PUTU32(blocks[i].c + 12, ctx->D[i]);
        ctx->D[i] = key->tail.h[3];
        PUTU32(blocks[i].c + 16, ctx->E[i]);
        ctx->E[i] = key->tail.h[4];
        PUTU32(blocks[i].c + 20, ctx->F[i]);
        ctx->F[i] = key->tail.h[5];
        PUTU32(blocks[i].c + 24, ctx->G[i]);
        ctx->G[i] = key->tail.h[6];
        PUTU32(blocks[i].c + 28, ctx->H[i]);
        ctx->H[i] = key->tail.h[7];
        blocks[i].c[32] = 0x80;
        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
#   endif
        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* finalize MACs */
    sha256_multi_block(ctx, edges, n4x);

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
        unsigned char *out0 = out;

        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
        ciph_d[i].inp = ciph_d[i].out;

        out += 5 + 16 + len;

        /* write MAC */
        PUTU32(out + 0, ctx->A[i]);
        PUTU32(out + 4, ctx->B[i]);
        PUTU32(out + 8, ctx->C[i]);
        PUTU32(out + 12, ctx->D[i]);
        PUTU32(out + 16, ctx->E[i]);
        PUTU32(out + 20, ctx->F[i]);
        PUTU32(out + 24, ctx->G[i]);
        PUTU32(out + 28, ctx->H[i]);
        out += 32;
        len += 32;

        /* pad */
        pad = 15 - len % 16;
        for (j = 0; j <= pad; j++)
            *(out++) = pad;
        len += pad + 1;

        ciph_d[i].blocks = (len - processed) / 16;
        len += 16;              /* account for explicit iv */

        /* arrange header */
        out0[0] = ((u8 *)key->md.data)[8];
        out0[1] = ((u8 *)key->md.data)[9];
        out0[2] = ((u8 *)key->md.data)[10];
        out0[3] = (u8)(len >> 8);
        out0[4] = (u8)(len);

        ret += len + 5;
        inp += frag;
    }

    aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);

    OPENSSL_cleanse(blocks, sizeof(blocks));
    OPENSSL_cleanse(ctx, sizeof(*ctx));

    return ret;
467
}
468
#  endif
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
                                        unsigned char *out,
                                        const unsigned char *in, size_t len)
{
    EVP_AES_HMAC_SHA256 *key = data(ctx);
    unsigned int l;
    size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
                                                * later */
        sha_off = 0;
#  if defined(STITCHED_CALL)
    size_t aes_off = 0, blocks;

    sha_off = SHA256_CBLOCK - key->md.num;
#  endif

    key->payload_length = NO_PAYLOAD_LENGTH;

    if (len % AES_BLOCK_SIZE)
        return 0;

    if (ctx->encrypt) {
        if (plen == NO_PAYLOAD_LENGTH)
            plen = len;
        else if (len !=
                 ((plen + SHA256_DIGEST_LENGTH +
                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
            return 0;
        else if (key->aux.tls_ver >= TLS1_1_VERSION)
            iv = AES_BLOCK_SIZE;

#  if defined(STITCHED_CALL)
        if (OPENSSL_ia32cap_P[1] & (1 << (60 - 32)) && /* AVX? */
            plen > (sha_off + iv) &&
            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
            SHA256_Update(&key->md, in + iv, sha_off);

            (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
                                       ctx->iv, &key->md, in + iv + sha_off);
            blocks *= SHA256_CBLOCK;
            aes_off += blocks;
            sha_off += blocks;
            key->md.Nh += blocks >> 29;
            key->md.Nl += blocks <<= 3;
            if (key->md.Nl < (unsigned int)blocks)
                key->md.Nh++;
        } else {
            sha_off = 0;
        }
#  endif
        sha_off += iv;
        SHA256_Update(&key->md, in + sha_off, plen - sha_off);

        if (plen != len) {      /* "TLS" mode of operation */
            if (in != out)
                memcpy(out + aes_off, in + aes_off, plen - aes_off);

            /* calculate HMAC and append it to payload */
            SHA256_Final(out + plen, &key->md);
            key->md = key->tail;
            SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
            SHA256_Final(out + plen, &key->md);

            /* pad the payload|hmac */
            plen += SHA256_DIGEST_LENGTH;
            for (l = len - plen - 1; plen < len; plen++)
                out[plen] = l;
            /* encrypt HMAC|padding at once */
            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
                              &key->ks, ctx->iv, 1);
        } else {
            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
                              &key->ks, ctx->iv, 1);
        }
    } else {
        union {
            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
            unsigned char c[64 + SHA256_DIGEST_LENGTH];
        } mac, *pmac;

        /* arrange cache line alignment */
        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));

        /* decrypt HMAC|padding at once */
        aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);

        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
            size_t inp_len, mask, j, i;
            unsigned int res, maxpad, pad, bitlen;
            int ret = 1;
            union {
                unsigned int u[SHA_LBLOCK];
                unsigned char c[SHA256_CBLOCK];
            } *data = (void *)key->md.data;

            if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
                >= TLS1_1_VERSION)
                iv = AES_BLOCK_SIZE;

            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
                return 0;

            /* omit explicit iv */
            out += iv;
            len -= iv;

            /* figure out payload length */
            pad = out[len - 1];
            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
            maxpad &= 255;

            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
            mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1)));
            inp_len &= mask;
            ret &= (int)mask;

            key->aux.tls_aad[plen - 2] = inp_len >> 8;
            key->aux.tls_aad[plen - 1] = inp_len;

            /* calculate HMAC */
            key->md = key->head;
            SHA256_Update(&key->md, key->aux.tls_aad, plen);

#  if 1
            len -= SHA256_DIGEST_LENGTH; /* amend mac */
            if (len >= (256 + SHA256_CBLOCK)) {
                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
                j += SHA256_CBLOCK - key->md.num;
                SHA256_Update(&key->md, out, j);
                out += j;
                len -= j;
                inp_len -= j;
            }

            /* but pretend as if we hashed padded payload */
            bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
#   ifdef BSWAP4
            bitlen = BSWAP4(bitlen);
#   else
            mac.c[0] = 0;
            mac.c[1] = (unsigned char)(bitlen >> 16);
            mac.c[2] = (unsigned char)(bitlen >> 8);
            mac.c[3] = (unsigned char)bitlen;
            bitlen = mac.u[0];
#   endif

            pmac->u[0] = 0;
            pmac->u[1] = 0;
            pmac->u[2] = 0;
            pmac->u[3] = 0;
            pmac->u[4] = 0;
            pmac->u[5] = 0;
            pmac->u[6] = 0;
            pmac->u[7] = 0;

            for (res = key->md.num, j = 0; j < len; j++) {
                size_t c = out[j];
                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
                c &= mask;
                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
                data->c[res++] = (unsigned char)c;

                if (res != SHA256_CBLOCK)
                    continue;

                /* j is not incremented yet */
                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&key->md, data, 1);
                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= key->md.h[0] & mask;
                pmac->u[1] |= key->md.h[1] & mask;
                pmac->u[2] |= key->md.h[2] & mask;
                pmac->u[3] |= key->md.h[3] & mask;
                pmac->u[4] |= key->md.h[4] & mask;
                pmac->u[5] |= key->md.h[5] & mask;
                pmac->u[6] |= key->md.h[6] & mask;
                pmac->u[7] |= key->md.h[7] & mask;
                res = 0;
            }

            for (i = res; i < SHA256_CBLOCK; i++, j++)
                data->c[i] = 0;

            if (res > SHA256_CBLOCK - 8) {
                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&key->md, data, 1);
                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= key->md.h[0] & mask;
                pmac->u[1] |= key->md.h[1] & mask;
                pmac->u[2] |= key->md.h[2] & mask;
                pmac->u[3] |= key->md.h[3] & mask;
                pmac->u[4] |= key->md.h[4] & mask;
                pmac->u[5] |= key->md.h[5] & mask;
                pmac->u[6] |= key->md.h[6] & mask;
                pmac->u[7] |= key->md.h[7] & mask;

                memset(data, 0, SHA256_CBLOCK);
                j += 64;
            }
            data->u[SHA_LBLOCK - 1] = bitlen;
            sha256_block_data_order(&key->md, data, 1);
            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
            pmac->u[0] |= key->md.h[0] & mask;
            pmac->u[1] |= key->md.h[1] & mask;
            pmac->u[2] |= key->md.h[2] & mask;
            pmac->u[3] |= key->md.h[3] & mask;
            pmac->u[4] |= key->md.h[4] & mask;
            pmac->u[5] |= key->md.h[5] & mask;
            pmac->u[6] |= key->md.h[6] & mask;
            pmac->u[7] |= key->md.h[7] & mask;

#   ifdef BSWAP4
            pmac->u[0] = BSWAP4(pmac->u[0]);
            pmac->u[1] = BSWAP4(pmac->u[1]);
            pmac->u[2] = BSWAP4(pmac->u[2]);
            pmac->u[3] = BSWAP4(pmac->u[3]);
            pmac->u[4] = BSWAP4(pmac->u[4]);
            pmac->u[5] = BSWAP4(pmac->u[5]);
            pmac->u[6] = BSWAP4(pmac->u[6]);
            pmac->u[7] = BSWAP4(pmac->u[7]);
#   else
            for (i = 0; i < 8; i++) {
                res = pmac->u[i];
                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
                pmac->c[4 * i + 3] = (unsigned char)res;
            }
#   endif
            len += SHA256_DIGEST_LENGTH;
#  else
            SHA256_Update(&key->md, out, inp_len);
            res = key->md.num;
            SHA256_Final(pmac->c, &key->md);

            {
                unsigned int inp_blocks, pad_blocks;

                /* but pretend as if we hashed padded payload */
                inp_blocks =
                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
                res += (unsigned int)(len - inp_len);
                pad_blocks = res / SHA256_CBLOCK;
                res %= SHA256_CBLOCK;
                pad_blocks +=
                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
                for (; inp_blocks < pad_blocks; inp_blocks++)
                    sha1_block_data_order(&key->md, data, 1);
            }
#  endif
            key->md = key->tail;
            SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
            SHA256_Final(pmac->c, &key->md);

            /* verify HMAC */
            out += inp_len;
            len -= inp_len;
#  if 1
            {
                unsigned char *p =
                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
                size_t off = out - p;
                unsigned int c, cmask;

                maxpad += SHA256_DIGEST_LENGTH;
                for (res = 0, i = 0, j = 0; j < maxpad; j++) {
                    c = p[j];
                    cmask =
                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
                        (sizeof(int) * 8 - 1);
                    res |= (c ^ pad) & ~cmask; /* ... and padding */
                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
                    res |= (c ^ pmac->c[i]) & cmask;
                    i += 1 & cmask;
                }
                maxpad -= SHA256_DIGEST_LENGTH;

                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
                ret &= (int)~res;
            }
#  else
            for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
                res |= out[i] ^ pmac->c[i];
            res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
            ret &= (int)~res;

            /* verify padding */
            pad = (pad & ~res) | (maxpad & res);
            out = out + len - 1 - pad;
            for (res = 0, i = 0; i < pad; i++)
                res |= out[i] ^ pad;

            res = (0 - res) >> (sizeof(res) * 8 - 1);
            ret &= (int)~res;
#  endif
            return ret;
        } else {
            SHA256_Update(&key->md, out, len);
        }
    }

    return 1;
}
A
Andy Polyakov 已提交
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
                                      void *ptr)
{
    EVP_AES_HMAC_SHA256 *key = data(ctx);
    unsigned int u_arg = (unsigned int)arg;

    switch (type) {
    case EVP_CTRL_AEAD_SET_MAC_KEY:
        {
            unsigned int i;
            unsigned char hmac_key[64];

            memset(hmac_key, 0, sizeof(hmac_key));

            if (arg < 0)
                return -1;

            if (u_arg > sizeof(hmac_key)) {
                SHA256_Init(&key->head);
                SHA256_Update(&key->head, ptr, arg);
                SHA256_Final(hmac_key, &key->head);
            } else {
                memcpy(hmac_key, ptr, arg);
            }

            for (i = 0; i < sizeof(hmac_key); i++)
                hmac_key[i] ^= 0x36; /* ipad */
            SHA256_Init(&key->head);
            SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));

            for (i = 0; i < sizeof(hmac_key); i++)
                hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
            SHA256_Init(&key->tail);
            SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));

            OPENSSL_cleanse(hmac_key, sizeof(hmac_key));

            return 1;
        }
    case EVP_CTRL_AEAD_TLS1_AAD:
        {
            unsigned char *p = ptr;
            unsigned int len = p[arg - 2] << 8 | p[arg - 1];

820 821 822 823 824
            if (arg != EVP_AEAD_TLS1_AAD_LEN)
                return -1;

            len = p[arg - 2] << 8 | p[arg - 1];

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
            if (ctx->encrypt) {
                key->payload_length = len;
                if ((key->aux.tls_ver =
                     p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
                    len -= AES_BLOCK_SIZE;
                    p[arg - 2] = len >> 8;
                    p[arg - 1] = len;
                }
                key->md = key->head;
                SHA256_Update(&key->md, p, arg);

                return (int)(((len + SHA256_DIGEST_LENGTH +
                               AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
                             - len);
            } else {
                memcpy(key->aux.tls_aad, ptr, arg);
                key->payload_length = arg;

                return SHA256_DIGEST_LENGTH;
            }
        }
#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
    case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
        return (int)(5 + 16 + ((arg + 32 + 16) & -16));
    case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
        {
            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
            unsigned int n4x = 1, x4;
            unsigned int frag, last, packlen, inp_len;

            if (arg < 0)
                return -1;

            if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
                return -1;

            inp_len = param->inp[11] << 8 | param->inp[12];

            if (ctx->encrypt) {
                if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
                    return -1;

                if (inp_len) {
                    if (inp_len < 4096)
                        return 0; /* too short */

                    if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
                        n4x = 2; /* AVX2 */
                } else if ((n4x = param->interleave / 4) && n4x <= 2)
                    inp_len = param->len;
                else
                    return -1;

                key->md = key->head;
                SHA256_Update(&key->md, param->inp, 13);

                x4 = 4 * n4x;
                n4x += 1;

                frag = inp_len >> n4x;
                last = inp_len + frag - (frag << n4x);
                if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
                    frag++;
                    last -= x4 - 1;
                }

                packlen = 5 + 16 + ((frag + 32 + 16) & -16);
                packlen = (packlen << n4x) - packlen;
                packlen += 5 + 16 + ((last + 32 + 16) & -16);

                param->interleave = x4;

                return (int)packlen;
            } else
                return -1;      /* not yet */
        }
    case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
        {
            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;

            return (int)tls1_1_multi_block_encrypt(key, param->out,
                                                   param->inp, param->len,
                                                   param->interleave / 4);
        }
    case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
#  endif
    default:
        return -1;
    }
}
A
Andy Polyakov 已提交
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
#  ifdef NID_aes_128_cbc_hmac_sha256
    NID_aes_128_cbc_hmac_sha256,
#  else
    NID_undef,
#  endif
    16, 16, 16,
    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
    aesni_cbc_hmac_sha256_init_key,
    aesni_cbc_hmac_sha256_cipher,
    NULL,
    sizeof(EVP_AES_HMAC_SHA256),
    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
    aesni_cbc_hmac_sha256_ctrl,
    NULL
};

static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
#  ifdef NID_aes_256_cbc_hmac_sha256
    NID_aes_256_cbc_hmac_sha256,
#  else
    NID_undef,
#  endif
    16, 32, 16,
    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
    aesni_cbc_hmac_sha256_init_key,
    aesni_cbc_hmac_sha256_cipher,
    NULL,
    sizeof(EVP_AES_HMAC_SHA256),
    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
    aesni_cbc_hmac_sha256_ctrl,
    NULL
};
A
Andy Polyakov 已提交
955 956

const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
957 958 959 960 961
{
    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
            &aesni_128_cbc_hmac_sha256_cipher : NULL);
}
A
Andy Polyakov 已提交
962 963

const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
964 965 966 967 968 969
{
    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
            &aesni_256_cbc_hmac_sha256_cipher : NULL);
}
# else
A
Andy Polyakov 已提交
970
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
971 972 973 974
{
    return NULL;
}

A
Andy Polyakov 已提交
975
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
976 977 978 979
{
    return NULL;
}
# endif
A
Andy Polyakov 已提交
980
#endif