armv4-gf2m.pl 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication
# used in bn_gf2m.c. It's kind of low-hanging mechanical port from
# C for the time being... Except that it has two code paths: pure
# integer code suitable for any ARMv4 and later CPU and NEON code
# suitable for ARMv7. Pure integer 1x1 multiplication subroutine runs
# in ~45 cycles on dual-issue core such as Cortex A8, which is ~50%
# faster than compiler-generated code. For ECDH and ECDSA verify (but
# not for ECDSA sign) it means 25%-45% improvement depending on key
# length, more for longer keys. Even though NEON 1x1 multiplication
# runs in even less cycles, ~30, improvement is measurable only on
# longer keys. One has to optimize code elsewhere to get NEON glow...

$a="r1";
$b="r0";

($a0,$a1,$a2,$a12,$a4,$a14)=
($hi,$lo,$t0,$t1, $i0,$i1 )=map("r$_",(4..9),12);

$mask="r12";

sub Dlo()   { shift=~m|q([1]?[0-9])|?"d".($1*2):"";     }
sub Dhi()   { shift=~m|q([1]?[0-9])|?"d".($1*2+1):"";   }
sub Q()     { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }

$code=<<___;
#include "arm_arch.h"

.text
.code	32

#if __ARM_ARCH__>=7
.fpu	neon

.type	mul_1x1_neon,%function
.align	5
mul_1x1_neon:
	vshl.u64	`&Dlo("q1")`,d16,#8	@ q1-q3 are slided $a
	vmull.p8	`&Q("d0")`,d16,d17	@ abb
	vshl.u64	`&Dlo("q2")`,d16,#16
	vmull.p8	q1,`&Dlo("q1")`,d17	@ a<<8bb
	vshl.u64	`&Dlo("q3")`,d16,#24
	vmull.p8	q2,`&Dlo("q2")`,d17	@ a<<16bb
	vshr.u64	`&Dlo("q1")`,#8
	vmull.p8	q3,`&Dlo("q3")`,d17	@ a<<24bb
	vshl.u64	`&Dhi("q1")`,#24
	veor		d0,`&Dlo("q1")`
	vshr.u64	`&Dlo("q2")`,#16
	veor		d0,`&Dhi("q1")`
	vshl.u64	`&Dhi("q2")`,#16
	veor		d0,`&Dlo("q2")`
	vshr.u64	`&Dlo("q3")`,#24
	veor		d0,`&Dhi("q2")`
	vshl.u64	`&Dhi("q3")`,#8
	veor		d0,`&Dlo("q3")`
	veor		d0,`&Dhi("q3")`
	bx	lr
.size	mul_1x1_neon,.-mul_1x1_neon
#endif

.align	5
.type	mul_1x1_ialu,%function
mul_1x1_ialu:
	mov	$a0,#0
	bic	$a1,$a,#3<<30		@ a1=a&0x3fffffff
	str	$a0,[sp,#0]		@ tab[0]=0
	add	$a2,$a1,$a1		@ a2=a1<<1
	str	$a1,[sp,#4]		@ tab[1]=a1
	eor	$a12,$a1,$a2		@ a1^a2
	str	$a2,[sp,#8]		@ tab[2]=a2
	mov	$a4,$a1,lsl#2		@ a4=a1<<2
	str	$a12,[sp,#12]		@ tab[3]=a1^a2
	eor	$a14,$a1,$a4		@ a1^a4
	str	$a4,[sp,#16]		@ tab[4]=a4
	eor	$a0,$a2,$a4		@ a2^a4
	str	$a14,[sp,#20]		@ tab[5]=a1^a4
	eor	$a12,$a12,$a4		@ a1^a2^a4
	str	$a0,[sp,#24]		@ tab[6]=a2^a4
	and	$i0,$mask,$b,lsl#2
	str	$a12,[sp,#28]		@ tab[7]=a1^a2^a4

	and	$i1,$mask,$b,lsr#1
	ldr	$lo,[sp,$i0]		@ tab[b       & 0x7]
	and	$i0,$mask,$b,lsr#4
	ldr	$t1,[sp,$i1]		@ tab[b >>  3 & 0x7]
	and	$i1,$mask,$b,lsr#7
	ldr	$t0,[sp,$i0]		@ tab[b >>  6 & 0x7]
	eor	$lo,$lo,$t1,lsl#3	@ stall
	mov	$hi,$t1,lsr#29
	ldr	$t1,[sp,$i1]		@ tab[b >>  9 & 0x7]

	and	$i0,$mask,$b,lsr#10
	eor	$lo,$lo,$t0,lsl#6
	eor	$hi,$hi,$t0,lsr#26
	ldr	$t0,[sp,$i0]		@ tab[b >> 12 & 0x7]

	and	$i1,$mask,$b,lsr#13
	eor	$lo,$lo,$t1,lsl#9
	eor	$hi,$hi,$t1,lsr#23
	ldr	$t1,[sp,$i1]		@ tab[b >> 15 & 0x7]

	and	$i0,$mask,$b,lsr#16
	eor	$lo,$lo,$t0,lsl#12
	eor	$hi,$hi,$t0,lsr#20
	ldr	$t0,[sp,$i0]		@ tab[b >> 18 & 0x7]

	and	$i1,$mask,$b,lsr#19
	eor	$lo,$lo,$t1,lsl#15
	eor	$hi,$hi,$t1,lsr#17
	ldr	$t1,[sp,$i1]		@ tab[b >> 21 & 0x7]

	and	$i0,$mask,$b,lsr#22
	eor	$lo,$lo,$t0,lsl#18
	eor	$hi,$hi,$t0,lsr#14
	ldr	$t0,[sp,$i0]		@ tab[b >> 24 & 0x7]

	and	$i1,$mask,$b,lsr#25
	eor	$lo,$lo,$t1,lsl#21
	eor	$hi,$hi,$t1,lsr#11
	ldr	$t1,[sp,$i1]		@ tab[b >> 27 & 0x7]

	tst	$a,#1<<30
	and	$i0,$mask,$b,lsr#28
	eor	$lo,$lo,$t0,lsl#24
	eor	$hi,$hi,$t0,lsr#8
	ldr	$t0,[sp,$i0]		@ tab[b >> 30      ]

	eorne	$lo,$lo,$b,lsl#30
	eorne	$hi,$hi,$b,lsr#2
	tst	$a,#1<<31
	eor	$lo,$lo,$t1,lsl#27
	eor	$hi,$hi,$t1,lsr#5
	eorne	$lo,$lo,$b,lsl#31
	eorne	$hi,$hi,$b,lsr#1
	eor	$lo,$lo,$t0,lsl#30
	eor	$hi,$hi,$t0,lsr#2

	mov	pc,lr
.size	mul_1x1_ialu,.-mul_1x1_ialu

.global	bn_GF2m_mul_2x2
.type	bn_GF2m_mul_2x2,%function
.align	5
bn_GF2m_mul_2x2:
#if __ARM_ARCH__>=7
	ldr	r12,.LOPENSSL_armcap
.Lpic:	ldr	r12,[pc,r12]
	tst	r12,#1
	beq	.Lialu
___
($A1,$B1,$A0,$B0,$A0B0,$A1B1)=map("d$_",(18..23));
$code.=<<___;
	veor	$A1,$A1
	vmov.32	$B1,r3,r3		@ two copies of b1
	vmov.32	${A1}[0],r1		@ a1

	veor	$A0,$A0
	vld1.32	${B0}[],[sp,:32]	@ two copies of b0
	vmov.32	${A0}[0],r2		@ a0
	mov	r12,lr

	vmov	d16,$A1
	vmov	d17,$B1
	bl	mul_1x1_neon		@ a1b1
	vmov	$A1B1,d0

	vmov	d16,$A0
	vmov	d17,$B0
	bl	mul_1x1_neon		@ a0b0
	vmov	$A0B0,d0

	veor	d16,$A0,$A1
	veor	d17,$B0,$B1
	veor	$A0,$A0B0,$A1B1
	bl	mul_1x1_neon		@ (a0+a1)(b0+b1)

	veor	d0,$A0			@ (a0+a1)(b0+b1)-a0b0-a1b1
	vshl.u64 d1,d0,#32
	vshr.u64 d0,d0,#32
	veor	$A0B0,d1
	veor	$A1B1,d0
	vst1.32	{${A0B0}[0]},[r0,:32]!
	vst1.32	{${A0B0}[1]},[r0,:32]!
	vst1.32	{${A1B1}[0]},[r0,:32]!
	vst1.32	{${A1B1}[1]},[r0,:32]
	bx	r12
.align	4
.Lialu:
#endif
___
$ret="r10";	# reassigned 1st argument
$code.=<<___;
	stmdb	sp!,{r4-r10,lr}
	mov	$ret,r0			@ reassign 1st argument
	mov	$b,r3			@ $b=b1
	ldr	r3,[sp,#32]		@ load b0
	mov	$mask,#7<<2
	sub	sp,#32			@ allocate tab[8]

	bl	mul_1x1_ialu		@ a1b1
	str	$lo,[$ret,#8]
	str	$hi,[$ret,#12]

	eor	$b,r3			@ flip b0 and b1
	 eor	$a,r2			@ flip a0 and a1
	eor	r3,$b
	 eor	r2,$a
	eor	$b,r3
	 eor	$a,r2
	bl	mul_1x1_ialu		@ a0b0
	str	$lo,[$ret]
	str	$hi,[$ret,#4]

	eor	$a,r2
	eor	$b,r3
	bl	mul_1x1_ialu		@ (a1+a0)(b1+b0)
___
@r=map("r$_",(6..9));
$code.=<<___;
	ldmia	$ret,{@r[0]-@r[3]}
	eor	$lo,$hi
	eor	$hi,@r[1]
	eor	$lo,@r[0]
	eor	$hi,@r[2]
	eor	$lo,@r[3]
	eor	$hi,@r[3]
	str	$hi,[$ret,#8]
	eor	$lo,$hi
	add	sp,#32			@ destroy tab[8]
	str	$lo,[$ret,#4]

#if __ARM_ARCH__>=5
	ldmia	sp!,{r4-r10,pc}
#else
	ldmia	sp!,{r4-r10,lr}
	tst	lr,#1
	moveq	pc,lr			@ be binary compatible with V4, yet
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
#if __ARM_ARCH__>=7
.align	5
.LOPENSSL_armcap:
.word	OPENSSL_armcap-(.Lpic+8)
#endif
.asciz	"GF2m Multiplication for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
.align	5

.comm	OPENSSL_armcap,4,4
___

$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm;    # make it possible to compile with -march=armv4
print $code;
close STDOUT;   # enforce flush