ec2_smpl.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* crypto/ec/ec2_smpl.c */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
 * to the OpenSSL project.
 *
 * The ECC Code is licensed pursuant to the OpenSSL open source
 * license provided below.
 *
 * The software is originally written by Sheueling Chang Shantz and
 * Douglas Stebila of Sun Microsystems Laboratories.
 *
 */
/* ====================================================================
17
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

D
Dr. Stephen Henson 已提交
70

71

72 73 74 75
#include <openssl/err.h>

#include "ec_lcl.h"

76 77
#ifndef OPENSSL_NO_EC2M

78 79 80 81

const EC_METHOD *EC_GF2m_simple_method(void)
	{
	static const EC_METHOD ret = {
82
		EC_FLAGS_DEFAULT_OCT,
83 84 85 86 87
		NID_X9_62_characteristic_two_field,
		ec_GF2m_simple_group_init,
		ec_GF2m_simple_group_finish,
		ec_GF2m_simple_group_clear_finish,
		ec_GF2m_simple_group_copy,
88 89
		ec_GF2m_simple_group_set_curve,
		ec_GF2m_simple_group_get_curve,
90 91 92 93 94 95 96
		ec_GF2m_simple_group_get_degree,
		ec_GF2m_simple_group_check_discriminant,
		ec_GF2m_simple_point_init,
		ec_GF2m_simple_point_finish,
		ec_GF2m_simple_point_clear_finish,
		ec_GF2m_simple_point_copy,
		ec_GF2m_simple_point_set_to_infinity,
97 98 99 100
		0 /* set_Jprojective_coordinates_GFp */,
		0 /* get_Jprojective_coordinates_GFp */,
		ec_GF2m_simple_point_set_affine_coordinates,
		ec_GF2m_simple_point_get_affine_coordinates,
101
		0,0,0,
102 103 104 105 106 107 108 109
		ec_GF2m_simple_add,
		ec_GF2m_simple_dbl,
		ec_GF2m_simple_invert,
		ec_GF2m_simple_is_at_infinity,
		ec_GF2m_simple_is_on_curve,
		ec_GF2m_simple_cmp,
		ec_GF2m_simple_make_affine,
		ec_GF2m_simple_points_make_affine,
110 111 112 113 114 115

		/* the following three method functions are defined in ec2_mult.c */
		ec_GF2m_simple_mul,
		ec_GF2m_precompute_mult,
		ec_GF2m_have_precompute_mult,

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
		ec_GF2m_simple_field_mul,
		ec_GF2m_simple_field_sqr,
		ec_GF2m_simple_field_div,
		0 /* field_encode */,
		0 /* field_decode */,
		0 /* field_set_to_one */ };

	return &ret;
	}


/* Initialize a GF(2^m)-based EC_GROUP structure.
 * Note that all other members are handled by EC_GROUP_new.
 */
int ec_GF2m_simple_group_init(EC_GROUP *group)
	{
	BN_init(&group->field);
	BN_init(&group->a);
	BN_init(&group->b);
	return 1;
	}


/* Free a GF(2^m)-based EC_GROUP structure.
 * Note that all other members are handled by EC_GROUP_free.
 */
void ec_GF2m_simple_group_finish(EC_GROUP *group)
	{
	BN_free(&group->field);
	BN_free(&group->a);
	BN_free(&group->b);
	}


/* Clear and free a GF(2^m)-based EC_GROUP structure.
 * Note that all other members are handled by EC_GROUP_clear_free.
 */
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
	{
	BN_clear_free(&group->field);
	BN_clear_free(&group->a);
	BN_clear_free(&group->b);
	group->poly[0] = 0;
	group->poly[1] = 0;
	group->poly[2] = 0;
	group->poly[3] = 0;
	group->poly[4] = 0;
163
	group->poly[5] = -1;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	}


/* Copy a GF(2^m)-based EC_GROUP structure.
 * Note that all other members are handled by EC_GROUP_copy.
 */
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
	{
	int i;
	if (!BN_copy(&dest->field, &src->field)) return 0;
	if (!BN_copy(&dest->a, &src->a)) return 0;
	if (!BN_copy(&dest->b, &src->b)) return 0;
	dest->poly[0] = src->poly[0];
	dest->poly[1] = src->poly[1];
	dest->poly[2] = src->poly[2];
	dest->poly[3] = src->poly[3];
	dest->poly[4] = src->poly[4];
181
	dest->poly[5] = src->poly[5];
182 183
	if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
	if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
184 185 186 187 188 189 190
	for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
	for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
	return 1;
	}


/* Set the curve parameters of an EC_GROUP structure. */
191
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
192 193 194 195 196 197
	const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	int ret = 0, i;

	/* group->field */
	if (!BN_copy(&group->field, p)) goto err;
198
	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
199 200 201 202 203
	if ((i != 5) && (i != 3))
		{
		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
		goto err;
		}
204 205 206

	/* group->a */
	if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
207
	if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
208 209 210 211
	for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
	
	/* group->b */
	if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
212
	if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
213 214 215 216 217 218 219 220 221 222 223
	for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
		
	ret = 1;
  err:
	return ret;
	}


/* Get the curve parameters of an EC_GROUP structure.
 * If p, a, or b are NULL then there values will not be set but the method will return with success.
 */
224
int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
225 226 227 228 229 230 231 232
	{
	int ret = 0;
	
	if (p != NULL)
		{
		if (!BN_copy(p, &group->field)) return 0;
		}

B
Bodo Möller 已提交
233
	if (a != NULL)
234
		{
B
Bodo Möller 已提交
235 236 237 238 239 240
		if (!BN_copy(a, &group->a)) goto err;
		}

	if (b != NULL)
		{
		if (!BN_copy(b, &group->b)) goto err;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		}
	
	ret = 1;
	
  err:
	return ret;
	}


/* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
	{
	return BN_num_bits(&group->field)-1;
	}


/* Checks the discriminant of the curve.
 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 
 */
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
	{
	int ret = 0;
	BIGNUM *b;
	BN_CTX *new_ctx = NULL;

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			{
			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
			goto err;
			}
		}
	BN_CTX_start(ctx);
	b = BN_CTX_get(ctx);
	if (b == NULL) goto err;

	if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
	
	/* check the discriminant:
	 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) 
	 */
	if (BN_is_zero(b)) goto err;

	ret = 1;

err:
289 290
	if (ctx != NULL)
		BN_CTX_end(ctx);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


/* Initializes an EC_POINT. */
int ec_GF2m_simple_point_init(EC_POINT *point)
	{
	BN_init(&point->X);
	BN_init(&point->Y);
	BN_init(&point->Z);
	return 1;
	}


/* Frees an EC_POINT. */
void ec_GF2m_simple_point_finish(EC_POINT *point)
	{
	BN_free(&point->X);
	BN_free(&point->Y);
	BN_free(&point->Z);
	}


/* Clears and frees an EC_POINT. */
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
	{
	BN_clear_free(&point->X);
	BN_clear_free(&point->Y);
	BN_clear_free(&point->Z);
	point->Z_is_one = 0;
	}


/* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
	{
	if (!BN_copy(&dest->X, &src->X)) return 0;
	if (!BN_copy(&dest->Y, &src->Y)) return 0;
	if (!BN_copy(&dest->Z, &src->Z)) return 0;
	dest->Z_is_one = src->Z_is_one;

	return 1;
	}


/* Set an EC_POINT to the point at infinity.  
 * A point at infinity is represented by having Z=0.
 */
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
	{
	point->Z_is_one = 0;
344 345
	BN_zero(&point->Z);
	return 1;
346 347 348 349 350 351
	}


/* Set the coordinates of an EC_POINT using affine coordinates. 
 * Note that the simple implementation only uses affine coordinates.
 */
352
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
353 354 355 356 357
	const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
	{
	int ret = 0;	
	if (x == NULL || y == NULL)
		{
358
		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
359 360 361 362
		return 0;
		}

	if (!BN_copy(&point->X, x)) goto err;
363
	BN_set_negative(&point->X, 0);
364
	if (!BN_copy(&point->Y, y)) goto err;
365
	BN_set_negative(&point->Y, 0);
366
	if (!BN_copy(&point->Z, BN_value_one())) goto err;
367
	BN_set_negative(&point->Z, 0);
368
	point->Z_is_one = 1;
369
	ret = 1;
370 371 372 373 374 375 376 377 378

  err:
	return ret;
	}


/* Gets the affine coordinates of an EC_POINT. 
 * Note that the simple implementation only uses affine coordinates.
 */
379
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
380 381 382 383 384 385
	BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
	{
	int ret = 0;

	if (EC_POINT_is_at_infinity(group, point))
		{
386
		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
387 388 389 390 391
		return 0;
		}

	if (BN_cmp(&point->Z, BN_value_one())) 
		{
392
		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
393 394 395 396 397
		return 0;
		}
	if (x != NULL)
		{
		if (!BN_copy(x, &point->X)) goto err;
398
		BN_set_negative(x, 0);
399 400 401 402
		}
	if (y != NULL)
		{
		if (!BN_copy(y, &point->Y)) goto err;
403
		BN_set_negative(y, 0);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		}
	ret = 1;
		
 err:
	return ret;
	}

/* Computes a + b and stores the result in r.  r could be a or b, a could be b.
 * Uses algorithm A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
	int ret = 0;
	
	if (EC_POINT_is_at_infinity(group, a))
		{
		if (!EC_POINT_copy(r, b)) return 0;
		return 1;
		}

	if (EC_POINT_is_at_infinity(group, b))
		{
		if (!EC_POINT_copy(r, a)) return 0;
		return 1;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	BN_CTX_start(ctx);
	x0 = BN_CTX_get(ctx);
	y0 = BN_CTX_get(ctx);
	x1 = BN_CTX_get(ctx);
	y1 = BN_CTX_get(ctx);
	x2 = BN_CTX_get(ctx);
	y2 = BN_CTX_get(ctx);
	s = BN_CTX_get(ctx);
	t = BN_CTX_get(ctx);
	if (t == NULL) goto err;

	if (a->Z_is_one) 
		{
		if (!BN_copy(x0, &a->X)) goto err;
		if (!BN_copy(y0, &a->Y)) goto err;
		}
	else
		{
		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
		}
	if (b->Z_is_one) 
		{
		if (!BN_copy(x1, &b->X)) goto err;
		if (!BN_copy(y1, &b->Y)) goto err;
		}
	else
		{
		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
		}


	if (BN_GF2m_cmp(x0, x1))
		{
		if (!BN_GF2m_add(t, x0, x1)) goto err;
		if (!BN_GF2m_add(s, y0, y1)) goto err;
		if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
		if (!BN_GF2m_add(x2, x2, s)) goto err;
		if (!BN_GF2m_add(x2, x2, t)) goto err;
		}
	else
		{
		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
			{
			if (!EC_POINT_set_to_infinity(group, r)) goto err;
			ret = 1;
			goto err;
			}
		if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
		if (!BN_GF2m_add(s, s, x1)) goto err;
		
		if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
		if (!BN_GF2m_add(x2, x2, s)) goto err;
		if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
		}

	if (!BN_GF2m_add(y2, x1, x2)) goto err;
	if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
	if (!BN_GF2m_add(y2, y2, x2)) goto err;
	if (!BN_GF2m_add(y2, y2, y1)) goto err;

	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;

	ret = 1;

 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}


/* Computes 2 * a and stores the result in r.  r could be a.
 * Uses algorithm A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
	{
	return ec_GF2m_simple_add(group, r, a, a, ctx);
	}


int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
	{
	if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
		/* point is its own inverse */
		return 1;
	
	if (!EC_POINT_make_affine(group, point, ctx)) return 0;
	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
	}


/* Indicates whether the given point is the point at infinity. */
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
	{
	return BN_is_zero(&point->Z);
	}


/* Determines whether the given EC_POINT is an actual point on the curve defined
 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 *      y^2 + x*y = x^3 + a*x^2 + b.
 */
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
	{
	int ret = -1;
547 548 549 550
	BN_CTX *new_ctx = NULL;
	BIGNUM *lh, *y2;
	int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
	int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
551 552 553

	if (EC_POINT_is_at_infinity(group, point))
		return 1;
554 555 556 557

	field_mul = group->meth->field_mul;
	field_sqr = group->meth->field_sqr;	

558
	/* only support affine coordinates */
D
Dr. Stephen Henson 已提交
559
	if (!point->Z_is_one) return -1;
560 561 562 563 564 565 566 567 568

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return -1;
		}

	BN_CTX_start(ctx);
569
	y2 = BN_CTX_get(ctx);
570
	lh = BN_CTX_get(ctx);
571
	if (lh == NULL) goto err;
572 573 574

	/* We have a curve defined by a Weierstrass equation
	 *      y^2 + x*y = x^3 + a*x^2 + b.
575 576
	 *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
	 *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
577
	 */
578 579 580 581 582 583 584 585
	if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
	if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
	if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
	if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
	if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
	if (!BN_GF2m_add(lh, lh, y2)) goto err;
	ret = BN_is_zero(lh);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
 err:
	if (ctx) BN_CTX_end(ctx);
	if (new_ctx) BN_CTX_free(new_ctx);
	return ret;
	}


/* Indicates whether two points are equal.
 * Return values:
 *  -1   error
 *   0   equal (in affine coordinates)
 *   1   not equal
 */
int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
	{
	BIGNUM *aX, *aY, *bX, *bY;
	BN_CTX *new_ctx = NULL;
	int ret = -1;

	if (EC_POINT_is_at_infinity(group, a))
		{
		return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
		}
D
Dr. Stephen Henson 已提交
609 610 611

	if (EC_POINT_is_at_infinity(group, b))
		return 1;
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	
	if (a->Z_is_one && b->Z_is_one)
		{
		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return -1;
		}

	BN_CTX_start(ctx);
	aX = BN_CTX_get(ctx);
	aY = BN_CTX_get(ctx);
	bX = BN_CTX_get(ctx);
	bY = BN_CTX_get(ctx);
	if (bY == NULL) goto err;

	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;

  err:	
	if (ctx) BN_CTX_end(ctx);
	if (new_ctx) BN_CTX_free(new_ctx);
	return ret;
	}


/* Forces the given EC_POINT to internally use affine coordinates. */
int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y;
	int ret = 0;

	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
		return 1;
	
	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}

	BN_CTX_start(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto err;
	
	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
	if (!BN_copy(&point->X, x)) goto err;
	if (!BN_copy(&point->Y, y)) goto err;
	if (!BN_one(&point->Z)) goto err;
	
	ret = 1;		

  err:
	if (ctx) BN_CTX_end(ctx);
	if (new_ctx) BN_CTX_free(new_ctx);
	return ret;
	}


/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
	{
	size_t i;

	for (i = 0; i < num; i++)
		{
		if (!group->meth->make_affine(group, points[i], ctx)) return 0;
		}

	return 1;
	}


/* Wrapper to simple binary polynomial field multiplication implementation. */
int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
	}


/* Wrapper to simple binary polynomial field squaring implementation. */
int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
	{
	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
	}


/* Wrapper to simple binary polynomial field division implementation. */
int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
	}
712 713

#endif