ec_cvt.c 5.4 KB
Newer Older
1 2 3
/*
 * Originally written by Bodo Moeller for the OpenSSL project.
 */
4
/* ====================================================================
B
Bodo Möller 已提交
5
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
6 7 8 9 10 11
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
12
 *    notice, this list of conditions and the following disclaimer.
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
57 58 59
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
60
 * Portions of the attached software ("Contribution") are developed by
61 62 63 64 65 66 67 68 69
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * The elliptic curve binary polynomial software is originally written by
 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
 *
 */
70

B
Bodo Möller 已提交
71
#include <openssl/err.h>
72
#include "ec_lcl.h"
73

74 75 76 77 78
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
                                 const BIGNUM *b, BN_CTX *ctx)
{
    const EC_METHOD *meth;
    EC_GROUP *ret;
B
Bodo Möller 已提交
79

80
#if defined(OPENSSL_BN_ASM_MONT)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    /*
     * This might appear controversial, but the fact is that generic
     * prime method was observed to deliver better performance even
     * for NIST primes on a range of platforms, e.g.: 60%-15%
     * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25%
     * in 32-bit build and 35%--12% in 64-bit build on Core2...
     * Coefficients are relative to optimized bn_nist.c for most
     * intensive ECDSA verify and ECDH operations for 192- and 521-
     * bit keys respectively. Choice of these boundary values is
     * arguable, because the dependency of improvement coefficient
     * from key length is not a "monotone" curve. For example while
     * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's
     * generally faster, sometimes "respectfully" faster, sometimes
     * "tolerably" slower... What effectively happens is that loop
     * with bn_mul_add_words is put against bn_mul_mont, and the
     * latter "wins" on short vectors. Correct solution should be
     * implementing dedicated NxN multiplication subroutines for
     * small N. But till it materializes, let's stick to generic
     * prime method...
     *                                              <appro>
     */
    meth = EC_GFp_mont_method();
103
#else
104 105 106 107
    if (BN_nist_mod_func(p))
        meth = EC_GFp_nist_method();
    else
        meth = EC_GFp_mont_method();
108
#endif
109

110 111 112
    ret = EC_GROUP_new(meth);
    if (ret == NULL)
        return NULL;
113

114 115 116 117 118 119 120
    if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx)) {
        EC_GROUP_clear_free(ret);
        return NULL;
    }

    return ret;
}
121

122
#ifndef OPENSSL_NO_EC2M
123 124 125 126 127 128 129 130 131 132 133
EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a,
                                  const BIGNUM *b, BN_CTX *ctx)
{
    const EC_METHOD *meth;
    EC_GROUP *ret;

    meth = EC_GF2m_simple_method();

    ret = EC_GROUP_new(meth);
    if (ret == NULL)
        return NULL;
134

135 136 137 138
    if (!EC_GROUP_set_curve_GF2m(ret, p, a, b, ctx)) {
        EC_GROUP_clear_free(ret);
        return NULL;
    }
139

140 141
    return ret;
}
142
#endif