sha256.c 9.8 KB
Newer Older
1 2
/* crypto/sha/sha256.c */
/* ====================================================================
3 4
 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
 * according to the OpenSSL license [found in ../../LICENSE].
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * ====================================================================
 */
#include <stdlib.h>
#include <string.h>

#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>

const char *SHA256_version="SHA-256" OPENSSL_VERSION_PTEXT;

int SHA224_Init (SHA256_CTX *c)
	{
	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
23 24 25
	c->Nl=0;	c->Nh=0;
	c->num=0;	c->md_len=SHA224_DIGEST_LENGTH;
	return 1;
26 27 28 29 30 31 32 33
	}

int SHA256_Init (SHA256_CTX *c)
	{
	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
34 35 36
	c->Nl=0;	c->Nh=0;
	c->num=0;	c->md_len=SHA256_DIGEST_LENGTH;
	return 1;
37 38 39 40 41
	}

unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
	{
	SHA256_CTX c;
42
	static unsigned char m[SHA224_DIGEST_LENGTH];
43

44
	if (md == NULL) md=m;
45 46
	SHA224_Init(&c);
	SHA256_Update(&c,d,n);
47
	SHA256_Final(md,&c);
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
	OPENSSL_cleanse(&c,sizeof(c));
	return(md);
	}

unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
	{
	SHA256_CTX c;
	static unsigned char m[SHA256_DIGEST_LENGTH];

	if (md == NULL) md=m;
	SHA256_Init(&c);
	SHA256_Update(&c,d,n);
	SHA256_Final(md,&c);
	OPENSSL_cleanse(&c,sizeof(c));
	return(md);
	}

65 66 67 68 69
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
{   return SHA256_Update (c,data,len);   }
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
{   return SHA256_Final (md,c);   }

70 71 72 73 74 75 76 77 78 79 80
#ifndef	SHA_LONG_LOG2
#define	SHA_LONG_LOG2	2	/* default to 32 bits */
#endif

#define	DATA_ORDER_IS_BIG_ENDIAN

#define	HASH_LONG		SHA_LONG
#define	HASH_LONG_LOG2		SHA_LONG_LOG2
#define	HASH_CTX		SHA256_CTX
#define	HASH_CBLOCK		SHA_CBLOCK
#define	HASH_LBLOCK		SHA_LBLOCK
81 82 83
/*
 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
 * default: case below covers for it. It's not clear however if it's
A
Andy Polyakov 已提交
84
 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
85 86 87 88
 * but if it is, then default: case shall be extended. For reference.
 * Idea behind separate cases for pre-defined lenghts is to let the
 * compiler decide if it's appropriate to unroll small loops.
 */
89 90
#define	HASH_MAKE_STRING(c,s)	do {	\
	unsigned long ll;		\
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	unsigned int  n;		\
	switch ((c)->md_len)		\
	{   case SHA224_DIGEST_LENGTH:	\
		for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)	\
		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
		break;			\
	    case SHA256_DIGEST_LENGTH:	\
		for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)	\
		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
		break;			\
	    default:			\
		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
		    return 0;				\
		for (n=0;n<(c)->md_len/4;n++)		\
		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
		break;			\
	}				\
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	} while (0)

#define	HASH_UPDATE		SHA256_Update
#define	HASH_TRANSFORM		SHA256_Transform
#define	HASH_FINAL		SHA256_Final
#define	HASH_BLOCK_HOST_ORDER	sha256_block_host_order
#define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);

#include "md32_common.h"

static const SHA_LONG K256[64] = {
	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };

/*
 * FIPS specification refers to right rotations, while our ROTATE macro
 * is left one. This is why you might notice that rotation coefficients
 * differ from those observed in FIPS document by 32-N...
 */
#define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
#define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
#define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
#define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))

#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

#ifdef OPENSSL_SMALL_FOOTPRINT

static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
	{
	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
	SHA_LONG	X[16];
	int i;
158
	const unsigned char *data=in;
159 160 161 162 163 164 165 166

			while (num--) {

	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];

	if (host)
		{
167
		const SHA_LONG *W=(const SHA_LONG *)data;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

		for (i=0;i<16;i++)
			{
			T1 = X[i] = W[i];
			T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
			T2 = Sigma0(a) + Maj(a,b,c);
			h = g;	g = f;	f = e;	e = d + T1;
			d = c;	c = b;	b = a;	a = T1 + T2;
			}
		}
	else
		{
		SHA_LONG l;

		for (i=0;i<16;i++)
			{
			HOST_c2l(data,l); T1 = X[i] = l;
			T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
			T2 = Sigma0(a) + Maj(a,b,c);
			h = g;	g = f;	f = e;	e = d + T1;
			d = c;	c = b;	b = a;	a = T1 + T2;
			}
		}

	for (;i<64;i++)
		{
		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);

		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
		T2 = Sigma0(a) + Maj(a,b,c);
		h = g;	g = f;	f = e;	e = d + T1;
		d = c;	c = b;	b = a;	a = T1 + T2;
		}

	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;

207
			data += SHA256_CBLOCK;
208 209 210 211 212 213 214 215 216 217 218 219 220
			}
}

#else

#define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
	h = Sigma0(a) + Maj(a,b,c);			\
	d += T1;	h += T1;		} while (0)

#define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
221
	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
222 223 224 225 226 227 228
	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)

static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
	{
	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
	SHA_LONG	X[16];
	int i;
229
	const unsigned char *data=in;
230 231 232 233 234 235 236 237

			while (num--) {

	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];

	if (host)
		{
238
		const SHA_LONG *W=(const SHA_LONG *)data;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
		}
	else
		{
		SHA_LONG l;

		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
		}

	for (i=16;i<64;i+=8)
		{
		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
		}

	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;

294
			data += SHA256_CBLOCK;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			}
	}

#endif

/*
 * Idea is to trade couple of cycles for some space. On IA-32 we save
 * about 4K in "big footprint" case. In "small footprint" case any gain
 * is appreciated:-)
 */
void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
{   sha256_block (ctx,in,num,1);   }

void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
{   sha256_block (ctx,in,num,0);   }