bn_sqrt.c 9.8 KB
Newer Older
N
Nils Larsch 已提交
1
/* crypto/bn/bn_sqrt.c */
B
BN_sqrt  
Bodo Möller 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
 * and Bodo Moeller for the OpenSSL project. */
/* ====================================================================
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include "cryptlib.h"
#include "bn_lcl.h"


BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) 
/* Returns 'ret' such that
 *      ret^2 == a (mod p),
 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
 * in Algebraic Computational Number Theory", algorithm 1.5.1).
 * 'p' must be prime!
 */
	{
	BIGNUM *ret = in;
	int err = 1;
	int r;
73
	BIGNUM *A, *b, *q, *t, *x, *y;
B
BN_sqrt  
Bodo Möller 已提交
74 75 76 77 78 79 80 81 82 83 84 85
	int e, i, j;
	
	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
		{
		if (BN_abs_is_word(p, 2))
			{
			if (ret == NULL)
				ret = BN_new();
			if (ret == NULL)
				goto end;
			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
				{
86 87
				if (ret != in)
					BN_free(ret);
B
BN_sqrt  
Bodo Möller 已提交
88 89
				return NULL;
				}
90
			bn_check_top(ret);
B
BN_sqrt  
Bodo Möller 已提交
91 92 93 94 95 96 97
			return ret;
			}

		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		return(NULL);
		}

98 99 100 101 102 103 104 105
	if (BN_is_zero(a) || BN_is_one(a))
		{
		if (ret == NULL)
			ret = BN_new();
		if (ret == NULL)
			goto end;
		if (!BN_set_word(ret, BN_is_one(a)))
			{
106 107
			if (ret != in)
				BN_free(ret);
108 109
			return NULL;
			}
110
		bn_check_top(ret);
111 112 113
		return ret;
		}

B
BN_sqrt  
Bodo Möller 已提交
114
	BN_CTX_start(ctx);
115
	A = BN_CTX_get(ctx);
B
BN_sqrt  
Bodo Möller 已提交
116 117 118 119 120 121 122 123 124 125 126
	b = BN_CTX_get(ctx);
	q = BN_CTX_get(ctx);
	t = BN_CTX_get(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto end;
	
	if (ret == NULL)
		ret = BN_new();
	if (ret == NULL) goto end;

127 128 129
	/* A = a mod p */
	if (!BN_nnmod(A, a, p, ctx)) goto end;

B
BN_sqrt  
Bodo Möller 已提交
130 131 132 133
	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
	e = 1;
	while (!BN_is_bit_set(p, e))
		e++;
B
Bodo Möller 已提交
134
	/* we'll set  q  later (if needed) */
B
BN_sqrt  
Bodo Möller 已提交
135 136 137

	if (e == 1)
		{
138 139
		/*-
		 * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
B
Bodo Möller 已提交
140
		 * modulo  (|p|-1)/2,  and square roots can be computed
B
BN_sqrt  
Bodo Möller 已提交
141 142
		 * directly by modular exponentiation.
		 * We have
B
Bodo Möller 已提交
143 144
		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
B
BN_sqrt  
Bodo Möller 已提交
145
		 */
146
		if (!BN_rshift(q, p, 2)) goto end;
147
		q->neg = 0;
148
		if (!BN_add_word(q, 1)) goto end;
149
		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
150
		err = 0;
151
		goto vrfy;
B
BN_sqrt  
Bodo Möller 已提交
152 153
		}
	
154 155
	if (e == 2)
		{
156 157
		/*-
		 * |p| == 5  (mod 8)
158 159 160 161 162
		 *
		 * In this case  2  is always a non-square since
		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
		 * So if  a  really is a square, then  2*a  is a non-square.
		 * Thus for
B
Bodo Möller 已提交
163
		 *      b := (2*a)^((|p|-5)/8),
164 165
		 *      i := (2*a)*b^2
		 * we have
B
Bodo Möller 已提交
166
		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		 *         = (2*a)^((p-1)/2)
		 *         = -1;
		 * so if we set
		 *      x := a*b*(i-1),
		 * then
		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
		 *         = a^2 * b^2 * (-2*i)
		 *         = a*(-i)*(2*a*b^2)
		 *         = a*(-i)*i
		 *         = a.
		 *
		 * (This is due to A.O.L. Atkin, 
		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
		 * November 1992.)
		 */

		/* t := 2*a */
184
		if (!BN_mod_lshift1_quick(t, A, p)) goto end;
185

B
Bodo Möller 已提交
186
		/* b := (2*a)^((|p|-5)/8) */
187
		if (!BN_rshift(q, p, 3)) goto end;
188
		q->neg = 0;
189 190 191 192 193 194 195
		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

		/* y := b^2 */
		if (!BN_mod_sqr(y, b, p, ctx)) goto end;

		/* t := (2*a)*b^2 - 1*/
		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
B
Bodo Möller 已提交
196
		if (!BN_sub_word(t, 1)) goto end;
197 198

		/* x = a*b*t */
199
		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
200 201 202 203
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

		if (!BN_copy(ret, x)) goto end;
		err = 0;
204
		goto vrfy;
205 206 207
		}
	
	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
B
BN_sqrt  
Bodo Möller 已提交
208
	 * First, find some  y  that is not a square. */
B
Bodo Möller 已提交
209 210
	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
	q->neg = 0;
211
	i = 2;
B
BN_sqrt  
Bodo Möller 已提交
212 213 214 215 216
	do
		{
		/* For efficiency, try small numbers first;
		 * if this fails, try random numbers.
		 */
217
		if (i < 22)
B
BN_sqrt  
Bodo Möller 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			{
			if (!BN_set_word(y, i)) goto end;
			}
		else
			{
			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
			if (BN_ucmp(y, p) >= 0)
				{
				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
				}
			/* now 0 <= y < |p| */
			if (BN_is_zero(y))
				if (!BN_set_word(y, i)) goto end;
			}
		
B
Bodo Möller 已提交
233
		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
B
BN_sqrt  
Bodo Möller 已提交
234 235 236 237 238 239 240 241
		if (r < -1) goto end;
		if (r == 0)
			{
			/* m divides p */
			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
			goto end;
			}
		}
242
	while (r == 1 && ++i < 82);
B
BN_sqrt  
Bodo Möller 已提交
243 244 245 246 247 248 249 250 251 252 253 254
	
	if (r != -1)
		{
		/* Many rounds and still no non-square -- this is more likely
		 * a bug than just bad luck.
		 * Even if  p  is not prime, we should have found some  y
		 * such that r == -1.
		 */
		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
		goto end;
		}

B
Bodo Möller 已提交
255 256
	/* Here's our actual 'q': */
	if (!BN_rshift(q, q, e)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
257 258 259 260 261 262 263 264 265 266

	/* Now that we have some non-square, we can find an element
	 * of order  2^e  by computing its q'th power. */
	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
	if (BN_is_one(y))
		{
		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		goto end;
		}

267 268
	/*-
	 * Now we know that (if  p  is indeed prime) there is an integer
B
BN_sqrt  
Bodo Möller 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	 * k,  0 <= k < 2^e,  such that
	 *
	 *      a^q * y^k == 1   (mod p).
	 *
	 * As  a^q  is a square and  y  is not,  k  must be even.
	 * q+1  is even, too, so there is an element
	 *
	 *     X := a^((q+1)/2) * y^(k/2),
	 *
	 * and it satisfies
	 *
	 *     X^2 = a^q * a     * y^k
	 *         = a,
	 *
	 * so it is the square root that we are looking for.
	 */
	
	/* t := (q-1)/2  (note that  q  is odd) */
	if (!BN_rshift1(t, q)) goto end;
	
	/* x := a^((q-1)/2) */
	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
		{
292
		if (!BN_nnmod(t, A, p, ctx)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
293 294 295
		if (BN_is_zero(t))
			{
			/* special case: a == 0  (mod p) */
296
			BN_zero(ret);
B
BN_sqrt  
Bodo Möller 已提交
297 298 299 300 301 302 303 304
			err = 0;
			goto end;
			}
		else
			if (!BN_one(x)) goto end;
		}
	else
		{
305
		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
306 307 308
		if (BN_is_zero(x))
			{
			/* special case: a == 0  (mod p) */
309
			BN_zero(ret);
B
BN_sqrt  
Bodo Möller 已提交
310 311 312 313 314 315 316
			err = 0;
			goto end;
			}
		}

	/* b := a*x^2  (= a^q) */
	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
317
	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
318 319
	
	/* x := a*x    (= a^((q+1)/2)) */
320
	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
B
BN_sqrt  
Bodo Möller 已提交
321 322 323

	while (1)
		{
324 325
		/*- 
		 * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
B
BN_sqrt  
Bodo Möller 已提交
326 327 328 329 330 331 332 333 334 335 336 337
		 * where  E  refers to the original value of  e,  which we
		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
		 *
		 * We have  a*b = x^2,
		 *    y^2^(e-1) = -1,
		 *    b^2^(e-1) = 1.
		 */

		if (BN_is_one(b))
			{
			if (!BN_copy(ret, x)) goto end;
			err = 0;
338
			goto vrfy;
B
BN_sqrt  
Bodo Möller 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
			}


		/* find smallest  i  such that  b^(2^i) = 1 */
		i = 1;
		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
		while (!BN_is_one(t))
			{
			i++;
			if (i == e)
				{
				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
				goto end;
				}
			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
			}
		

		/* t := y^2^(e - i - 1) */
		if (!BN_copy(t, y)) goto end;
		for (j = e - i - 1; j > 0; j--)
			{
			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
			}
		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
		e = i;
		}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
 vrfy:
	if (!err)
		{
		/* verify the result -- the input might have been not a square
		 * (test added in 0.9.8) */
		
		if (!BN_mod_sqr(x, ret, p, ctx))
			err = 1;
		
		if (!err && 0 != BN_cmp(x, A))
			{
			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
			err = 1;
			}
		}

B
BN_sqrt  
Bodo Möller 已提交
385 386 387 388 389 390 391 392 393 394
 end:
	if (err)
		{
		if (ret != NULL && ret != in)
			{
			BN_clear_free(ret);
			}
		ret = NULL;
		}
	BN_CTX_end(ctx);
395
	bn_check_top(ret);
B
BN_sqrt  
Bodo Möller 已提交
396 397
	return ret;
	}