sha512.c 14.4 KB
Newer Older
1 2
/* crypto/sha/sha512.c */
/* ====================================================================
3 4
 * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
 * according to the OpenSSL license [found in ../../LICENSE].
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 * ====================================================================
 */
/*
 * IMPLEMENTATION NOTES.
 *
 * As you might have noticed 32-bit hash algorithms:
 *
 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
 * - optimized versions implement two transform functions: one operating
 *   on [aligned] data in host byte order and one - on data in input
 *   stream byte order;
 * - share common byte-order neutral collector and padding function
 *   implementations, ../md32_common.h;
 *
 * Neither of the above applies to this SHA-512 implementations. Reasons
 * [in reverse order] are:
 *
 * - it's the only 64-bit hash algorithm for the moment of this writing,
 *   there is no need for common collector/padding implementation [yet];
 * - by supporting only one transform function [which operates on
 *   *aligned* data in input stream byte order, big-endian in this case]
 *   we minimize burden of maintenance in two ways: a) collector/padding
 *   function is simpler; b) only one transform function to stare at;
 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
 *   apply a number of optimizations to mitigate potential performance
 *   penalties caused by previous design decision;
 *
 * Caveat lector.
 *
 * Implementation relies on the fact that "long long" is 64-bit on
 * both 32- and 64-bit platforms. If some compiler vendor comes up
 * with 128-bit long long, adjustment to sha.h would be required.
 * As this implementation relies on 64-bit integer type, it's totally
 * inappropriate for platforms which don't support it, most notably
 * 16-bit platforms.
 *					<appro@fy.chalmers.se>
 */
#include <stdlib.h>
#include <string.h>

#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>

const char *SHA512_version="SHA-512" OPENSSL_VERSION_PTEXT;

52 53 54 55
#if defined(_M_IX86) || defined(_M_AMD64) || defined(__i386) || defined(__x86_64)
#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
#endif

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
int SHA384_Init (SHA512_CTX *c)
	{
	c->h[0]=U64(0xcbbb9d5dc1059ed8);
	c->h[1]=U64(0x629a292a367cd507);
	c->h[2]=U64(0x9159015a3070dd17);
	c->h[3]=U64(0x152fecd8f70e5939);
	c->h[4]=U64(0x67332667ffc00b31);
	c->h[5]=U64(0x8eb44a8768581511);
	c->h[6]=U64(0xdb0c2e0d64f98fa7);
	c->h[7]=U64(0x47b5481dbefa4fa4);
        c->Nl=0;        c->Nh=0;
        c->num=0;
        return 1;
	}

int SHA512_Init (SHA512_CTX *c)
	{
	c->h[0]=U64(0x6a09e667f3bcc908);
	c->h[1]=U64(0xbb67ae8584caa73b);
	c->h[2]=U64(0x3c6ef372fe94f82b);
	c->h[3]=U64(0xa54ff53a5f1d36f1);
	c->h[4]=U64(0x510e527fade682d1);
	c->h[5]=U64(0x9b05688c2b3e6c1f);
	c->h[6]=U64(0x1f83d9abfb41bd6b);
	c->h[7]=U64(0x5be0cd19137e2179);
        c->Nl=0;        c->Nh=0;
        c->num=0;
        return 1;
	}

static void sha512_block (SHA512_CTX *ctx, const void *in, size_t num);

static int sha512_final (unsigned char *md, SHA512_CTX *c, size_t msz)
	{
	unsigned char *p=(unsigned char *)c->u.p;
	size_t n=c->num;

	p[n]=0x80;
	n++;
	if (n > (sizeof(c->u)-16))
		memset (p+n,0,sizeof(c->u)-n), n=0,
		sha512_block (c,p,1);

	memset (p+n,0,sizeof(c->u)-16-n);
#ifdef	B_ENDIAN
	c->u.d[SHA_LBLOCK-2] = c->Nh;
	c->u.d[SHA_LBLOCK-1] = c->Nl;
#else
	p[sizeof(c->u)-1]  = (c->Nl)&0xFF;
	p[sizeof(c->u)-2]  = (c->Nl>>8)&0xFF;
	p[sizeof(c->u)-3]  = (c->Nl>>16)&0xFF;
	p[sizeof(c->u)-4]  = (c->Nl>>24)&0xFF;
	p[sizeof(c->u)-5]  = (c->Nl>>32)&0xFF;
	p[sizeof(c->u)-6]  = (c->Nl>>40)&0xFF;
	p[sizeof(c->u)-7]  = (c->Nl>>48)&0xFF;
	p[sizeof(c->u)-8]  = (c->Nl>>56)&0xFF;
	p[sizeof(c->u)-9]  = (c->Nh)&0xFF;
	p[sizeof(c->u)-10] = (c->Nh>>8)&0xFF;
	p[sizeof(c->u)-11] = (c->Nh>>16)&0xFF;
	p[sizeof(c->u)-12] = (c->Nh>>24)&0xFF;
	p[sizeof(c->u)-13] = (c->Nh>>32)&0xFF;
	p[sizeof(c->u)-14] = (c->Nh>>40)&0xFF;
	p[sizeof(c->u)-15] = (c->Nh>>48)&0xFF;
	p[sizeof(c->u)-16] = (c->Nh>>56)&0xFF;
#endif

	sha512_block (c,p,1);

	if (md==0) return 0;

	for (n=0;msz>0;n++,msz-=8)
		{
		SHA_LONG64 t = c->h[n];

		*(md++)	= (t>>56)&0xFF;	*(md++)	= (t>>48)&0xFF;
		*(md++)	= (t>>40)&0xFF;	*(md++)	= (t>>32)&0xFF;
		*(md++)	= (t>>24)&0xFF;	*(md++)	= (t>>16)&0xFF;
		*(md++)	= (t>>8)&0xFF;	*(md++)	= (t)&0xFF;
		}

	return 1;
	}

int SHA384_Final (unsigned char *md,SHA512_CTX *c)
{   return sha512_final (md,c,SHA384_DIGEST_LENGTH);   }
int SHA512_Final (unsigned char *md,SHA512_CTX *c)
{   return sha512_final (md,c,SHA512_DIGEST_LENGTH);   }

int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
	{
	SHA_LONG64	l;
	unsigned char  *p=c->u.p,*data=(unsigned char *)_data;

	if (len==0) return  1;

	l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
	if (l < c->Nl)		c->Nh++;
	if (sizeof(len)>=8)	c->Nh+=(((SHA_LONG64)len)>>61);
	c->Nl=l;

	if (c->num != 0)
		{
		size_t n = sizeof(c->u) - c->num;

		if (len < n)
			{
			memcpy (p+c->num,data,len), c->num += len;
			return 1;
			}
		else	{
			memcpy (p+c->num,data,n), c->num = 0;
			len-=n, data+=n;
			sha512_block (c,p,1);
			}
		}

	if (len >= sizeof(c->u))
		{
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
175
		if ((size_t)data%sizeof(c->u.d[0]) != 0)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
			while (len >= sizeof(c->u))
				memcpy (p,data,sizeof(c->u)),
				sha512_block (c,p,1),
				len  -= sizeof(c->u),
				data += sizeof(c->u);
		else
#endif
			sha512_block (c,data,len/sizeof(c->u)),
			data += len,
			len  %= sizeof(c->u),
			data -= len;
		}

	if (len != 0)	memcpy (p,data,len), c->num = (int)len;

	return 1;
	}

int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
{   return SHA512_Update (c,data,len);   }

void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
{   sha512_block (c,data,1);  }

unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
	{
	SHA512_CTX c;
	static unsigned char m[SHA384_DIGEST_LENGTH];

	if (md == NULL) md=m;
	SHA384_Init(&c);
	SHA512_Update(&c,d,n);
	sha512_final(md,&c,sizeof(m));
	OPENSSL_cleanse(&c,sizeof(c));
	return(md);
	}

unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
	{
	SHA512_CTX c;
	static unsigned char m[SHA512_DIGEST_LENGTH];

	if (md == NULL) md=m;
	SHA512_Init(&c);
	SHA512_Update(&c,d,n);
	sha512_final(md,&c,sizeof(m));
	OPENSSL_cleanse(&c,sizeof(c));
	return(md);
	}

static const SHA_LONG64 K512[80] = {
        U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
        U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
        U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
        U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
        U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
        U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
        U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
        U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
        U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
        U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
        U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
        U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
        U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
        U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
        U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
        U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
        U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
        U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
        U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
        U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
        U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
        U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
        U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
        U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
        U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
        U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
        U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
        U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
        U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
        U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
        U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
        U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
        U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
        U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
        U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
        U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
        U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
        U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
        U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
        U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };

268 269 270 271 272 273 274 275 276 277 278 279
#ifndef PEDANTIC
# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
#  if defined(__x86_64) || defined(__x86_64__)
#   define PULL64(x) ({ SHA_LONG64 ret=*((SHA_LONG64 *)(&(x)));	\
				asm ("bswapq	%0"		\
				: "=r"(ret)			\
				: "0"(ret)); ret;		})
#  endif
# endif
#endif

#ifndef PULL64
280 281
#define B(x,j)    (((SHA_LONG64)(*(((unsigned char *)(&x))+j)))<<((7-j)*8))
#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
#endif

#ifndef PEDANTIC
# if defined(_MSC_VER)
#  if defined(_WIN64)	/* applies to both IA-64 and AMD64 */
#   define ROTR(a,n)	_rotr64((a),n)
#  endif
# elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
#  if defined(__x86_64) || defined(__x86_64__)
#   define ROTR(a,n)	({ unsigned long ret;		\
				asm ("rorq %1,%0"	\
				: "=r"(ret)		\
				: "J"(n),"0"(a)		\
				: "cc"); ret;		})
#  elif defined(_ARCH_PPC) && defined(__64BIT__)
#   define ROTR(a,n)	({ unsigned long ret;		\
				asm ("rotrdi %0,%1,%2"	\
				: "=r"(ret)		\
				: "r"(a),"K"(n)); ret;	})
#  endif
# endif
#endif
304

305
#ifndef ROTR
306
#define ROTR(x,s)	(((x)>>s) | (x)<<(64-s))
307 308
#endif

309 310 311 312 313 314 315 316
#define Sigma0(x)	(ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
#define Sigma1(x)	(ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
#define sigma0(x)	(ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
#define sigma1(x)	(ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))

#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

317 318 319 320 321 322 323 324 325
#if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM)
#define	GO_FOR_SSE2(ctx,in,num)		do {		\
	extern int	OPENSSL_ia32cap;		\
	void		sha512_block_sse2(void *,const void *,size_t);	\
	if (!(OPENSSL_ia32cap & (1<<26))) break;	\
	sha512_block_sse2(ctx->h,in,num); return;	\
					} while (0)
#endif

326 327 328 329 330 331 332 333 334
#ifdef OPENSSL_SMALL_FOOTPRINT

static void sha512_block (SHA512_CTX *ctx, const void *in, size_t num)
	{
	const SHA_LONG64 *W=in;
	SHA_LONG64	a,b,c,d,e,f,g,h,s0,s1,T1,T2;
	SHA_LONG64	X[16];
	int i;

335 336 337 338
#ifdef GO_FOR_SSE2
	GO_FOR_SSE2(ctx,in,num);
#endif

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
			while (num--) {

	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];

	for (i=0;i<16;i++)
		{
#ifdef B_ENDIAN
		T1 = X[i] = W[i];
#else
		T1 = X[i] = PULL64(W[i]);
#endif
		T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
		T2 = Sigma0(a) + Maj(a,b,c);
		h = g;	g = f;	f = e;	e = d + T1;
		d = c;	c = b;	b = a;	a = T1 + T2;
		}

	for (;i<80;i++)
		{
		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);

		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
		T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
		T2 = Sigma0(a) + Maj(a,b,c);
		h = g;	g = f;	f = e;	e = d + T1;
		d = c;	c = b;	b = a;	a = T1 + T2;
		}

	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;

372
			W+=SHA_LBLOCK;
373 374 375 376 377 378 379 380 381 382 383 384 385
			}
	}

#else

#define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
	T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];	\
	h = Sigma0(a) + Maj(a,b,c);			\
	d += T1;	h += T1;		} while (0)

#define	ROUND_16_80(i,a,b,c,d,e,f,g,h,X)	do {	\
	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
386
	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
387 388 389 390 391 392 393 394 395
	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)

static void sha512_block (SHA512_CTX *ctx, const void *in, size_t num)
	{
	const SHA_LONG64 *W=in;
	SHA_LONG64	a,b,c,d,e,f,g,h,s0,s1,T1;
	SHA_LONG64	X[16];
	int i;

396 397 398 399
#ifdef GO_FOR_SSE2
	GO_FOR_SSE2(ctx,in,num);
#endif

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
			while (num--) {

	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];

#ifdef B_ENDIAN
	T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
	T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
	T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
	T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
	T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
	T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
	T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
	T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
	T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
	T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
	T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
	T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
	T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
	T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
	T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
	T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
#else
	T1 = X[0]  = PULL64(W[0]);	ROUND_00_15(0,a,b,c,d,e,f,g,h);
	T1 = X[1]  = PULL64(W[1]);	ROUND_00_15(1,h,a,b,c,d,e,f,g);
	T1 = X[2]  = PULL64(W[2]);	ROUND_00_15(2,g,h,a,b,c,d,e,f);
	T1 = X[3]  = PULL64(W[3]);	ROUND_00_15(3,f,g,h,a,b,c,d,e);
	T1 = X[4]  = PULL64(W[4]);	ROUND_00_15(4,e,f,g,h,a,b,c,d);
	T1 = X[5]  = PULL64(W[5]);	ROUND_00_15(5,d,e,f,g,h,a,b,c);
	T1 = X[6]  = PULL64(W[6]);	ROUND_00_15(6,c,d,e,f,g,h,a,b);
	T1 = X[7]  = PULL64(W[7]);	ROUND_00_15(7,b,c,d,e,f,g,h,a);
	T1 = X[8]  = PULL64(W[8]);	ROUND_00_15(8,a,b,c,d,e,f,g,h);
	T1 = X[9]  = PULL64(W[9]);	ROUND_00_15(9,h,a,b,c,d,e,f,g);
	T1 = X[10] = PULL64(W[10]);	ROUND_00_15(10,g,h,a,b,c,d,e,f);
	T1 = X[11] = PULL64(W[11]);	ROUND_00_15(11,f,g,h,a,b,c,d,e);
	T1 = X[12] = PULL64(W[12]);	ROUND_00_15(12,e,f,g,h,a,b,c,d);
	T1 = X[13] = PULL64(W[13]);	ROUND_00_15(13,d,e,f,g,h,a,b,c);
	T1 = X[14] = PULL64(W[14]);	ROUND_00_15(14,c,d,e,f,g,h,a,b);
	T1 = X[15] = PULL64(W[15]);	ROUND_00_15(15,b,c,d,e,f,g,h,a);
#endif

	for (i=16;i<80;i+=8)
		{
		ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
		ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
		ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
		ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
		ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
		ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
		ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
		ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
		}

	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;

456
			W+=SHA_LBLOCK;
457 458 459 460
			}
	}

#endif