ocb128.c 16.0 KB
Newer Older
R
Rich Salz 已提交
1 2
/*
 * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
R
Rich Salz 已提交
4 5 6 7
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
8 9 10 11 12 13
 */

#include <string.h>
#include <openssl/crypto.h>
#include "modes_lcl.h"

M
Matt Caswell 已提交
14 15
#ifndef OPENSSL_NO_OCB

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Calculate the number of binary trailing zero's in any given number
 */
static u32 ocb_ntz(u64 n)
{
    u32 cnt = 0;

    /*
     * We do a right-to-left simple sequential search. This is surprisingly
     * efficient as the distribution of trailing zeros is not uniform,
     * e.g. the number of possible inputs with no trailing zeros is equal to
     * the number with 1 or more; the number with exactly 1 is equal to the
     * number with 2 or more, etc. Checking the last two bits covers 75% of
     * all numbers. Checking the last three covers 87.5%
     */
    while (!(n & 1)) {
        n >>= 1;
        cnt++;
    }
    return cnt;
}

/*
 * Shift a block of 16 bytes left by shift bits
 */
41 42
static void ocb_block_lshift(const unsigned char *in, size_t shift,
                             unsigned char *out)
43 44 45 46
{
    unsigned char shift_mask;
    int i;
    unsigned char mask[15];
47

48 49 50 51
    shift_mask = 0xff;
    shift_mask <<= (8 - shift);
    for (i = 15; i >= 0; i--) {
        if (i > 0) {
52
            mask[i - 1] = in[i] & shift_mask;
53 54
            mask[i - 1] >>= 8 - shift;
        }
55
        out[i] = in[i] << shift;
56 57

        if (i != 15) {
58
            out[i] ^= mask[i];
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        }
    }
}

/*
 * Perform a "double" operation as per OCB spec
 */
static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
{
    unsigned char mask;

    /*
     * Calculate the mask based on the most significant bit. There are more
     * efficient ways to do this - but this way is constant time
     */
74
    mask = in->c[0] & 0x80;
75 76 77
    mask >>= 7;
    mask *= 135;

78
    ocb_block_lshift(in->c, 1, out->c);
79

80
    out->c[15] ^= mask;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
}

/*
 * Perform an xor on in1 and in2 - each of len bytes. Store result in out
 */
static void ocb_block_xor(const unsigned char *in1,
                          const unsigned char *in2, size_t len,
                          unsigned char *out)
{
    size_t i;
    for (i = 0; i < len; i++) {
        out[i] = in1[i] ^ in2[i];
    }
}

/*
 * Lookup L_index in our lookup table. If we haven't already got it we need to
 * calculate it
 */
100
static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
101
{
102 103 104
    size_t l_index = ctx->l_index;

    if (idx <= l_index) {
105
        return ctx->l + idx;
106 107 108
    }

    /* We don't have it - so calculate it */
109
    if (idx >= ctx->max_l_index) {
110
        void *tmp_ptr;
111 112 113 114 115 116 117 118 119 120
        /*
         * Each additional entry allows to process almost double as
         * much data, so that in linear world the table will need to
         * be expanded with smaller and smaller increments. Originally
         * it was doubling in size, which was a waste. Growing it
         * linearly is not formally optimal, but is simpler to implement.
         * We grow table by minimally required 4*n that would accommodate
         * the index.
         */
        ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
121
        tmp_ptr =
122
            OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
123
        if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
124
            return NULL;
125
        ctx->l = tmp_ptr;
126
    }
A
Andy Polyakov 已提交
127
    while (l_index < idx) {
128 129 130 131
        ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
        l_index++;
    }
    ctx->l_index = l_index;
132

133
    return ctx->l + idx;
134 135 136 137 138 139
}

/*
 * Create a new OCB128_CONTEXT
 */
OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
140 141
                                  block128_f encrypt, block128_f decrypt,
                                  ocb128_f stream)
142 143 144 145
{
    OCB128_CONTEXT *octx;
    int ret;

146
    if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
147 148
        ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
                                 stream);
149 150 151 152 153 154 155 156 157 158 159 160
        if (ret)
            return octx;
        OPENSSL_free(octx);
    }

    return NULL;
}

/*
 * Initialise an existing OCB128_CONTEXT
 */
int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
161 162
                       block128_f encrypt, block128_f decrypt,
                       ocb128_f stream)
163 164 165
{
    memset(ctx, 0, sizeof(*ctx));
    ctx->l_index = 0;
166
    ctx->max_l_index = 5;
167
    ctx->l = OPENSSL_malloc(ctx->max_l_index * 16);
168
    if (ctx->l == NULL)
169 170 171 172 173 174 175 176 177
        return 0;

    /*
     * We set both the encryption and decryption key schedules - decryption
     * needs both. Don't really need decryption schedule if only doing
     * encryption - but it simplifies things to take it anyway
     */
    ctx->encrypt = encrypt;
    ctx->decrypt = decrypt;
178
    ctx->stream = stream;
179 180 181 182
    ctx->keyenc = keyenc;
    ctx->keydec = keydec;

    /* L_* = ENCIPHER(K, zeros(128)) */
183
    ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
184 185 186 187 188 189 190

    /* L_$ = double(L_*) */
    ocb_double(&ctx->l_star, &ctx->l_dollar);

    /* L_0 = double(L_$) */
    ocb_double(&ctx->l_dollar, ctx->l);

191 192 193 194 195 196 197
    /* L_{i} = double(L_{i-1}) */
    ocb_double(ctx->l, ctx->l+1);
    ocb_double(ctx->l+1, ctx->l+2);
    ocb_double(ctx->l+2, ctx->l+3);
    ocb_double(ctx->l+3, ctx->l+4);
    ctx->l_index = 4;   /* enough to process up to 496 bytes */

198 199 200 201 202 203
    return 1;
}

/*
 * Copy an OCB128_CONTEXT object
 */
204
int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
205 206 207 208 209 210 211 212 213
                           void *keyenc, void *keydec)
{
    memcpy(dest, src, sizeof(OCB128_CONTEXT));
    if (keyenc)
        dest->keyenc = keyenc;
    if (keydec)
        dest->keydec = keydec;
    if (src->l) {
        dest->l = OPENSSL_malloc(src->max_l_index * 16);
214
        if (dest->l == NULL)
215 216 217 218 219 220 221 222 223
            return 0;
        memcpy(dest->l, src->l, (src->l_index + 1) * 16);
    }
    return 1;
}

/*
 * Set the IV to be used for this operation. Must be 1 - 15 bytes.
 */
224
int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
225 226 227 228 229 230 231 232
                        size_t len, size_t taglen)
{
    unsigned char ktop[16], tmp[16], mask;
    unsigned char stretch[24], nonce[16];
    size_t bottom, shift;

    /*
     * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
F
FdaSilvaYY 已提交
233
     * We don't support this at this stage
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
     */
    if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
        return -1;
    }

    /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
    nonce[0] = ((taglen * 8) % 128) << 1;
    memset(nonce + 1, 0, 15);
    memcpy(nonce + 16 - len, iv, len);
    nonce[15 - len] |= 1;

    /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
    memcpy(tmp, nonce, 16);
    tmp[15] &= 0xc0;
    ctx->encrypt(tmp, ktop, ctx->keyenc);

    /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
    memcpy(stretch, ktop, 16);
    ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);

    /* bottom = str2num(Nonce[123..128]) */
    bottom = nonce[15] & 0x3f;

    /* Offset_0 = Stretch[1+bottom..128+bottom] */
    shift = bottom % 8;
259
    ocb_block_lshift(stretch + (bottom / 8), shift, ctx->offset.c);
260 261
    mask = 0xff;
    mask <<= 8 - shift;
262
    ctx->offset.c[15] |=
263
        (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
264 265 266 267 268 269 270 271

    return 1;
}

/*
 * Provide any AAD. This can be called multiple times. Only the final time can
 * have a partial block
 */
272
int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
273 274
                      size_t len)
{
275 276
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;
277
    OCB_BLOCK tmp;
278

279 280 281 282 283 284 285
    /* Calculate the number of blocks of AAD provided now, and so far */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->blocks_hashed;

    /* Loop through all full blocks of AAD */
    for (i = ctx->blocks_hashed + 1; i <= all_num_blocks; i++) {
        OCB_BLOCK *lookup;
286

287 288
        /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
        lookup = ocb_lookup_l(ctx, ocb_ntz(i));
289
        if (lookup == NULL)
290 291 292
            return 0;
        ocb_block16_xor(&ctx->offset_aad, lookup, &ctx->offset_aad);

293 294 295
        memcpy(tmp.c, aad, 16);
        aad += 16;

296
        /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
297 298 299
        ocb_block16_xor(&ctx->offset_aad, &tmp, &tmp);
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
        ocb_block16_xor(&tmp, &ctx->sum, &ctx->sum);
300 301 302 303 304 305 306 307 308 309 310 311 312
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->offset_aad, &ctx->l_star, &ctx->offset_aad);

        /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
313 314 315 316
        memset(tmp.c, 0, 16);
        memcpy(tmp.c, aad, last_len);
        tmp.c[last_len] = 0x80;
        ocb_block16_xor(&ctx->offset_aad, &tmp, &tmp);
317 318

        /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
319 320
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
        ocb_block16_xor(&tmp, &ctx->sum, &ctx->sum);
321 322 323 324 325 326 327 328 329 330 331
    }

    ctx->blocks_hashed = all_num_blocks;

    return 1;
}

/*
 * Provide any data to be encrypted. This can be called multiple times. Only
 * the final time can have a partial block
 */
332
int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
333 334 335
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
336 337
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;
338 339 340 341 342 343 344 345

    /*
     * Calculate the number of blocks of data to be encrypted provided now, and
     * so far
     */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->blocks_processed;

346 347 348
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
        && ctx->stream != NULL) {
        size_t max_idx = 0, top = (size_t)all_num_blocks;
349

350 351 352 353 354 355 356
        /*
         * See how many L_{i} entries we need to process data at hand
         * and pre-compute missing entries in the table [if any]...
         */
        while (top >>= 1)
            max_idx++;
        if (ocb_lookup_l(ctx, max_idx) == NULL)
357 358
            return 0;

359 360 361 362 363 364 365
        ctx->stream(in, out, num_blocks, ctx->keyenc,
                    (size_t)ctx->blocks_processed + 1, ctx->offset.c,
                    (const unsigned char (*)[16])ctx->l, ctx->checksum.c);
    } else {
        /* Loop through all full blocks to be encrypted */
        for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) {
            OCB_BLOCK *lookup;
366
            OCB_BLOCK tmp;
367 368 369 370 371 372 373

            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
            lookup = ocb_lookup_l(ctx, ocb_ntz(i));
            if (lookup == NULL)
                return 0;
            ocb_block16_xor(&ctx->offset, lookup, &ctx->offset);

374 375 376
            memcpy(tmp.c, in, 16);
            in += 16;

377
            /* Checksum_i = Checksum_{i-1} xor P_i */
378 379 380 381 382 383 384 385 386
            ocb_block16_xor(&tmp, &ctx->checksum, &ctx->checksum);

            /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
            ocb_block16_xor(&ctx->offset, &tmp, &tmp);
            ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
            ocb_block16_xor(&ctx->offset, &tmp, &tmp);

            memcpy(out, tmp.c, 16);
            out += 16;
387
        }
388 389 390 391 392 393 394 395 396
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
397 398
        OCB_BLOCK pad;

399 400 401 402
        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset);

        /* Pad = ENCIPHER(K, Offset_*) */
403
        ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc);
404 405

        /* C_* = P_* xor Pad[1..bitlen(P_*)] */
406
        ocb_block_xor(in, pad.c, last_len, out);
407 408

        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
409 410 411 412
        memset(pad.c, 0, 16);           /* borrow pad */
        memcpy(pad.c, in, last_len);
        pad.c[last_len] = 0x80;
        ocb_block16_xor(&pad, &ctx->checksum, &ctx->checksum);
413 414 415 416 417 418 419 420 421 422 423
    }

    ctx->blocks_processed = all_num_blocks;

    return 1;
}

/*
 * Provide any data to be decrypted. This can be called multiple times. Only
 * the final time can have a partial block
 */
424
int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
425 426 427
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
428 429 430
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;

431 432 433 434 435 436 437
    /*
     * Calculate the number of blocks of data to be decrypted provided now, and
     * so far
     */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->blocks_processed;

438 439 440
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
        && ctx->stream != NULL) {
        size_t max_idx = 0, top = (size_t)all_num_blocks;
441

442 443 444 445 446 447 448
        /*
         * See how many L_{i} entries we need to process data at hand
         * and pre-compute missing entries in the table [if any]...
         */
        while (top >>= 1)
            max_idx++;
        if (ocb_lookup_l(ctx, max_idx) == NULL)
449
            return 0;
450 451 452 453 454

        ctx->stream(in, out, num_blocks, ctx->keydec,
                    (size_t)ctx->blocks_processed + 1, ctx->offset.c,
                    (const unsigned char (*)[16])ctx->l, ctx->checksum.c);
    } else {
455 456
        OCB_BLOCK tmp;

457 458 459 460 461 462 463 464 465
        /* Loop through all full blocks to be decrypted */
        for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) {

            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
            OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
            if (lookup == NULL)
                return 0;
            ocb_block16_xor(&ctx->offset, lookup, &ctx->offset);

466 467 468
            memcpy(tmp.c, in, 16);
            in += 16;

469
            /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
470 471 472
            ocb_block16_xor(&ctx->offset, &tmp, &tmp);
            ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
            ocb_block16_xor(&ctx->offset, &tmp, &tmp);
473 474

            /* Checksum_i = Checksum_{i-1} xor P_i */
475 476 477 478
            ocb_block16_xor(&tmp, &ctx->checksum, &ctx->checksum);

            memcpy(out, tmp.c, 16);
            out += 16;
479
        }
480 481 482 483 484 485 486 487 488
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
489 490
        OCB_BLOCK pad;

491 492 493 494
        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset);

        /* Pad = ENCIPHER(K, Offset_*) */
495
        ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc);
496 497

        /* P_* = C_* xor Pad[1..bitlen(C_*)] */
498
        ocb_block_xor(in, pad.c, last_len, out);
499 500

        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
501 502 503 504
        memset(pad.c, 0, 16);           /* borrow pad */
        memcpy(pad.c, out, last_len);
        pad.c[last_len] = 0x80;
        ocb_block16_xor(&pad, &ctx->checksum, &ctx->checksum);
505 506 507 508 509 510 511 512 513 514
    }

    ctx->blocks_processed = all_num_blocks;

    return 1;
}

/*
 * Calculate the tag and verify it against the supplied tag
 */
515
int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
516 517
                         size_t len)
{
518
    OCB_BLOCK tmp;
519

520 521 522
    /*
     * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
     */
523 524 525 526
    ocb_block16_xor(&ctx->checksum, &ctx->offset, &tmp);
    ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
    ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
    ocb_block16_xor(&tmp, &ctx->sum, &ctx->tag);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    if (len > 16 || len < 1) {
        return -1;
    }

    /* Compare the tag if we've been given one */
    if (tag)
        return CRYPTO_memcmp(&ctx->tag, tag, len);
    else
        return -1;
}

/*
 * Retrieve the calculated tag
 */
542
int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
543 544 545 546 547 548 549 550 551
{
    if (len > 16 || len < 1) {
        return -1;
    }

    /* Calculate the tag */
    CRYPTO_ocb128_finish(ctx, NULL, 0);

    /* Copy the tag into the supplied buffer */
552
    memcpy(tag, ctx->tag.c, len);
553 554 555 556 557 558 559

    return 1;
}

/*
 * Release all resources
 */
560
void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
561 562
{
    if (ctx) {
R
Rich Salz 已提交
563
        OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
564 565 566
        OPENSSL_cleanse(ctx, sizeof(*ctx));
    }
}
M
Matt Caswell 已提交
567

568
#endif                          /* OPENSSL_NO_OCB */