bn_gcd.c 22.9 KB
Newer Older
1
/* crypto/bn/bn_gcd.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
8
 *
9 10 11 12 13 14
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15
 *
16 17 18 19 20 21
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
22
 *
23 24 25 26 27 28 29 30 31 32 33 34 35 36
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
37
 * 4. If you include any Windows specific code (or a derivative thereof) from
38 39
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40
 *
41 42 43 44 45 46 47 48 49 50 51
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
52
 *
53 54 55 56 57
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
B
Bodo Möller 已提交
58
/* ====================================================================
59
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
B
Bodo Möller 已提交
60 61 62 63 64 65
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
66
 *    notice, this list of conditions and the following disclaimer.
B
Bodo Möller 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
111 112 113 114 115

#include "cryptlib.h"
#include "bn_lcl.h"

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116

117
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
    BIGNUM *a, *b, *t;
    int ret = 0;

    bn_check_top(in_a);
    bn_check_top(in_b);

    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    if (a == NULL || b == NULL)
        goto err;

    if (BN_copy(a, in_a) == NULL)
        goto err;
    if (BN_copy(b, in_b) == NULL)
        goto err;
    a->neg = 0;
    b->neg = 0;

    if (BN_cmp(a, b) < 0) {
        t = a;
        a = b;
        b = t;
    }
    t = euclid(a, b);
    if (t == NULL)
        goto err;

    if (BN_copy(r, t) == NULL)
        goto err;
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}
155

U
Ulf Möller 已提交
156
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
    BIGNUM *t;
    int shifts = 0;

    bn_check_top(a);
    bn_check_top(b);

    /* 0 <= b <= a */
    while (!BN_is_zero(b)) {
        /* 0 < b <= a */

        if (BN_is_odd(a)) {
            if (BN_is_odd(b)) {
                if (!BN_sub(a, a, b))
                    goto err;
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a odd - b even */

                if (!BN_rshift1(b, b))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            }
        } else {                /* a is even */

            if (BN_is_odd(b)) {
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a even - b even */

                if (!BN_rshift1(a, a))
                    goto err;
                if (!BN_rshift1(b, b))
                    goto err;
                shifts++;
            }
        }
        /* 0 <= b <= a */
    }

    if (shifts) {
        if (!BN_lshift(a, a, shifts))
            goto err;
    }
    bn_check_top(a);
    return (a);
 err:
    return (NULL);
}
B
Bodo Möller 已提交
220

221
/* solves ax == 1 (mod n) */
A
Andy Polyakov 已提交
222
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
223 224
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx);
225

226
BIGNUM *BN_mod_inverse(BIGNUM *in,
227 228 229 230 231 232 233 234 235
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
    BIGNUM *rv;
    int noinv;
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
    if (noinv)
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
    return rv;
}
236 237

BIGNUM *int_bn_mod_inverse(BIGNUM *in,
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
                           int *pnoinv)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    if (pnoinv)
        *pnoinv = 0;

    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
        return BN_mod_inverse_no_branch(in, a, n, ctx);
    }

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        if (!BN_nnmod(B, B, A, ctx))
            goto err;
    }
    sign = -1;
        /*-
         * From  B = a mod |n|,  A = |n|  it follows that
         *
         *      0 <= B < A,
         *     -sign*X*a  ==  B   (mod |n|),
         *      sign*Y*a  ==  A   (mod |n|).
         */

    if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
        /*
         * Binary inversion algorithm; requires odd modulus. This is faster
         * than the general algorithm if the modulus is sufficiently small
         * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
         * systems)
         */
        int shift;

        while (!BN_is_zero(B)) {
                        /*-
                         *      0 < B < |n|,
                         *      0 < A <= |n|,
                         * (1) -sign*X*a  ==  B   (mod |n|),
                         * (2)  sign*Y*a  ==  A   (mod |n|)
                         */

            /*
             * Now divide B by the maximum possible power of two in the
             * integers, and divide X by the same value mod |n|. When we're
             * done, (1) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
                shift++;

                if (BN_is_odd(X)) {
                    if (!BN_uadd(X, X, n))
                        goto err;
                }
                /*
                 * now X is even, so we can easily divide it by two
                 */
                if (!BN_rshift1(X, X))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(B, B, shift))
                    goto err;
            }

            /*
             * Same for A and Y.  Afterwards, (2) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
                shift++;

                if (BN_is_odd(Y)) {
                    if (!BN_uadd(Y, Y, n))
                        goto err;
                }
                /* now Y is even */
                if (!BN_rshift1(Y, Y))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(A, A, shift))
                    goto err;
            }

                        /*-
                         * We still have (1) and (2).
                         * Both  A  and  B  are odd.
                         * The following computations ensure that
                         *
                         *     0 <= B < |n|,
                         *      0 < A < |n|,
                         * (1) -sign*X*a  ==  B   (mod |n|),
                         * (2)  sign*Y*a  ==  A   (mod |n|),
                         *
                         * and that either  A  or  B  is even in the next iteration.
                         */
            if (BN_ucmp(B, A) >= 0) {
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
                if (!BN_uadd(X, X, Y))
                    goto err;
                /*
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
                 * actually makes the algorithm slower
                 */
                if (!BN_usub(B, B, A))
                    goto err;
            } else {
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
                if (!BN_uadd(Y, Y, X))
                    goto err;
                /*
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
                 * down
                 */
                if (!BN_usub(A, A, B))
                    goto err;
            }
        }
    } else {
        /* general inversion algorithm */

        while (!BN_is_zero(B)) {
            BIGNUM *tmp;

                        /*-
                         *      0 < B < A,
                         * (*) -sign*X*a  ==  B   (mod |n|),
                         *      sign*Y*a  ==  A   (mod |n|)
                         */

            /* (D, M) := (A/B, A%B) ... */
            if (BN_num_bits(A) == BN_num_bits(B)) {
                if (!BN_one(D))
                    goto err;
                if (!BN_sub(M, A, B))
                    goto err;
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
                /* A/B is 1, 2, or 3 */
                if (!BN_lshift1(T, B))
                    goto err;
                if (BN_ucmp(A, T) < 0) {
                    /* A < 2*B, so D=1 */
                    if (!BN_one(D))
                        goto err;
                    if (!BN_sub(M, A, B))
                        goto err;
                } else {
                    /* A >= 2*B, so D=2 or D=3 */
                    if (!BN_sub(M, A, T))
                        goto err;
                    if (!BN_add(D, T, B))
                        goto err; /* use D (:= 3*B) as temp */
                    if (BN_ucmp(A, D) < 0) {
                        /* A < 3*B, so D=2 */
                        if (!BN_set_word(D, 2))
                            goto err;
                        /*
                         * M (= A - 2*B) already has the correct value
                         */
                    } else {
                        /* only D=3 remains */
                        if (!BN_set_word(D, 3))
                            goto err;
                        /*
                         * currently M = A - 2*B, but we need M = A - 3*B
                         */
                        if (!BN_sub(M, M, B))
                            goto err;
                    }
                }
            } else {
                if (!BN_div(D, M, A, B, ctx))
                    goto err;
            }

                        /*-
                         * Now
                         *      A = D*B + M;
                         * thus we have
                         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
                         */

            tmp = A;            /* keep the BIGNUM object, the value does not
                                 * matter */

            /* (A, B) := (B, A mod B) ... */
            A = B;
            B = M;
            /* ... so we have  0 <= B < A  again */

                        /*-
                         * Since the former  M  is now  B  and the former  B  is now  A,
                         * (**) translates into
                         *       sign*Y*a  ==  D*A + B    (mod |n|),
                         * i.e.
                         *       sign*Y*a - D*A  ==  B    (mod |n|).
                         * Similarly, (*) translates into
                         *      -sign*X*a  ==  A          (mod |n|).
                         *
                         * Thus,
                         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
                         * i.e.
                         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
                         *
                         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
                         *      -sign*X*a  ==  B   (mod |n|),
                         *       sign*Y*a  ==  A   (mod |n|).
                         * Note that  X  and  Y  stay non-negative all the time.
                         */

            /*
             * most of the time D is very small, so we can optimize tmp :=
             * D*X+Y
             */
            if (BN_is_one(D)) {
                if (!BN_add(tmp, X, Y))
                    goto err;
            } else {
                if (BN_is_word(D, 2)) {
                    if (!BN_lshift1(tmp, X))
                        goto err;
                } else if (BN_is_word(D, 4)) {
                    if (!BN_lshift(tmp, X, 2))
                        goto err;
                } else if (D->top == 1) {
                    if (!BN_copy(tmp, X))
                        goto err;
                    if (!BN_mul_word(tmp, D->d[0]))
                        goto err;
                } else {
                    if (!BN_mul(tmp, D, X, ctx))
                        goto err;
                }
                if (!BN_add(tmp, tmp, Y))
                    goto err;
            }

            M = Y;              /* keep the BIGNUM object, the value does not
                                 * matter */
            Y = X;
            X = tmp;
            sign = -sign;
        }
    }

        /*-
         * The while loop (Euclid's algorithm) ends when
         *      A == gcd(a,n);
         * we have
         *       sign*Y*a  ==  A  (mod |n|),
         * where  Y  is non-negative.
         */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        if (pnoinv)
            *pnoinv = 1;
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return (ret);
}

/*
 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
 * not contain branches that may leak sensitive information.
556
 */
A
Andy Polyakov 已提交
557
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM local_A, local_B;
    BIGNUM *pA, *pB;
    BIGNUM *ret = NULL;
    int sign;

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;

    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        pB = &local_B;
        BN_with_flags(pB, B, BN_FLG_CONSTTIME);
        if (!BN_nnmod(B, pB, A, ctx))
            goto err;
    }
    sign = -1;
        /*-
         * From  B = a mod |n|,  A = |n|  it follows that
         *
         *      0 <= B < A,
         *     -sign*X*a  ==  B   (mod |n|),
         *      sign*Y*a  ==  A   (mod |n|).
         */

    while (!BN_is_zero(B)) {
        BIGNUM *tmp;

                /*-
                 *      0 < B < A,
                 * (*) -sign*X*a  ==  B   (mod |n|),
                 *      sign*Y*a  ==  A   (mod |n|)
                 */

        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        pA = &local_A;
        BN_with_flags(pA, A, BN_FLG_CONSTTIME);

        /* (D, M) := (A/B, A%B) ... */
        if (!BN_div(D, M, pA, B, ctx))
            goto err;

                /*-
                 * Now
                 *      A = D*B + M;
                 * thus we have
                 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
                 */

        tmp = A;                /* keep the BIGNUM object, the value does not
                                 * matter */

        /* (A, B) := (B, A mod B) ... */
        A = B;
        B = M;
        /* ... so we have  0 <= B < A  again */

                /*-
                 * Since the former  M  is now  B  and the former  B  is now  A,
                 * (**) translates into
                 *       sign*Y*a  ==  D*A + B    (mod |n|),
                 * i.e.
                 *       sign*Y*a - D*A  ==  B    (mod |n|).
                 * Similarly, (*) translates into
                 *      -sign*X*a  ==  A          (mod |n|).
                 *
                 * Thus,
                 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
                 * i.e.
                 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
                 *
                 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
                 *      -sign*X*a  ==  B   (mod |n|),
                 *       sign*Y*a  ==  A   (mod |n|).
                 * Note that  X  and  Y  stay non-negative all the time.
                 */

        if (!BN_mul(tmp, D, X, ctx))
            goto err;
        if (!BN_add(tmp, tmp, Y))
            goto err;

        M = Y;                  /* keep the BIGNUM object, the value does not
                                 * matter */
        Y = X;
        X = tmp;
        sign = -sign;
    }

        /*-
         * The while loop (Euclid's algorithm) ends when
         *      A == gcd(a,n);
         * we have
         *       sign*Y*a  ==  A  (mod |n|),
         * where  Y  is non-negative.
         */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return (ret);
}