rsa_oaep.c 10.3 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */

/*
 * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
 * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
 * proof for the original OAEP scheme, which EME-OAEP is based on. A new
 * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
 * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
 * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
 * for the underlying permutation: "partial-one-wayness" instead of
 * one-wayness.  For the RSA function, this is an equivalent notion.
 */

#include "internal/constant_time.h"

#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "rsa_local.h"

int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
                               const unsigned char *from, int flen,
                               const unsigned char *param, int plen)
{
    return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
                                           param, plen, NULL, NULL);
}

int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
                                    const unsigned char *from, int flen,
                                    const unsigned char *param, int plen,
                                    const EVP_MD *md, const EVP_MD *mgf1md)
{
    int rv = 0;
    int i, emlen = tlen - 1;
    unsigned char *db, *seed;
    unsigned char *dbmask = NULL;
    unsigned char seedmask[EVP_MAX_MD_SIZE];
    int mdlen, dbmask_len = 0;

    if (md == NULL)
        md = EVP_sha1();
    if (mgf1md == NULL)
        mgf1md = md;

    mdlen = EVP_MD_size(md);

    if (flen > emlen - 2 * mdlen - 1) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
               RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
        return 0;
    }

    if (emlen < 2 * mdlen + 1) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
               RSA_R_KEY_SIZE_TOO_SMALL);
        return 0;
    }

    to[0] = 0;
    seed = to + 1;
    db = to + mdlen + 1;

    if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
        goto err;
    memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
    db[emlen - flen - mdlen - 1] = 0x01;
    memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
    if (RAND_bytes(seed, mdlen) <= 0)
        goto err;

    dbmask_len = emlen - mdlen;
    dbmask = OPENSSL_malloc(dbmask_len);
    if (dbmask == NULL) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
        goto err;
    for (i = 0; i < dbmask_len; i++)
        db[i] ^= dbmask[i];

    if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
        goto err;
    for (i = 0; i < mdlen; i++)
        seed[i] ^= seedmask[i];
    rv = 1;

 err:
    OPENSSL_cleanse(seedmask, sizeof(seedmask));
    OPENSSL_clear_free(dbmask, dbmask_len);
    return rv;
}

int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
                                 const unsigned char *from, int flen, int num,
                                 const unsigned char *param, int plen)
{
    return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
                                             param, plen, NULL, NULL);
}

int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
                                      const unsigned char *from, int flen,
                                      int num, const unsigned char *param,
                                      int plen, const EVP_MD *md,
                                      const EVP_MD *mgf1md)
{
    int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
    unsigned int good = 0, found_one_byte, mask;
    const unsigned char *maskedseed, *maskeddb;
    /*
     * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
     * Y || maskedSeed || maskedDB
     */
    unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
        phash[EVP_MAX_MD_SIZE];
    int mdlen;

    if (md == NULL)
        md = EVP_sha1();
    if (mgf1md == NULL)
        mgf1md = md;

    mdlen = EVP_MD_size(md);

    if (tlen <= 0 || flen <= 0)
        return -1;
    /*
     * |num| is the length of the modulus; |flen| is the length of the
     * encoded message. Therefore, for any |from| that was obtained by
     * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
     * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
     * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
     * This does not leak any side-channel information.
     */
    if (num < flen || num < 2 * mdlen + 2) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
               RSA_R_OAEP_DECODING_ERROR);
        return -1;
    }

    dblen = num - mdlen - 1;
    db = OPENSSL_malloc(dblen);
    if (db == NULL) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
        goto cleanup;
    }

    em = OPENSSL_malloc(num);
    if (em == NULL) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
               ERR_R_MALLOC_FAILURE);
        goto cleanup;
    }

    /*
     * Caller is encouraged to pass zero-padded message created with
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
     * bounds, it's impossible to have an invariant memory access pattern
     * in case |from| was not zero-padded in advance.
     */
    for (from += flen, em += num, i = 0; i < num; i++) {
        mask = ~constant_time_is_zero(flen);
        flen -= 1 & mask;
        from -= 1 & mask;
        *--em = *from & mask;
    }

    /*
     * The first byte must be zero, however we must not leak if this is
     * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
     * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
     */
    good = constant_time_is_zero(em[0]);

    maskedseed = em + 1;
    maskeddb = em + 1 + mdlen;

    if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
        goto cleanup;
    for (i = 0; i < mdlen; i++)
        seed[i] ^= maskedseed[i];

    if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
        goto cleanup;
    for (i = 0; i < dblen; i++)
        db[i] ^= maskeddb[i];

    if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
        goto cleanup;

    good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));

    found_one_byte = 0;
    for (i = mdlen; i < dblen; i++) {
        /*
         * Padding consists of a number of 0-bytes, followed by a 1.
         */
        unsigned int equals1 = constant_time_eq(db[i], 1);
        unsigned int equals0 = constant_time_is_zero(db[i]);
        one_index = constant_time_select_int(~found_one_byte & equals1,
                                             i, one_index);
        found_one_byte |= equals1;
        good &= (found_one_byte | equals0);
    }

    good &= found_one_byte;

    /*
     * At this point |good| is zero unless the plaintext was valid,
     * so plaintext-awareness ensures timing side-channels are no longer a
     * concern.
     */
    msg_index = one_index + 1;
    mlen = dblen - msg_index;

    /*
     * For good measure, do this check in constant time as well.
     */
    good &= constant_time_ge(tlen, mlen);

    /*
     * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
     * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
     * Otherwise leave |to| unchanged.
     * Copy the memory back in a way that does not reveal the size of
     * the data being copied via a timing side channel. This requires copying
     * parts of the buffer multiple times based on the bits set in the real
     * length. Clear bits do a non-copy with identical access pattern.
     * The loop below has overall complexity of O(N*log(N)).
     */
    tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
                                    dblen - mdlen - 1, tlen);
    for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
        mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
        for (i = mdlen + 1; i < dblen - msg_index; i++)
            db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
    }
    for (i = 0; i < tlen; i++) {
        mask = good & constant_time_lt(i, mlen);
        to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
    }

    /*
     * To avoid chosen ciphertext attacks, the error message should not
     * reveal which kind of decoding error happened.
     */
    RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
           RSA_R_OAEP_DECODING_ERROR);
    err_clear_last_constant_time(1 & good);
 cleanup:
    OPENSSL_cleanse(seed, sizeof(seed));
    OPENSSL_clear_free(db, dblen);
    OPENSSL_clear_free(em, num);

    return constant_time_select_int(good, mlen, -1);
}

int PKCS1_MGF1(unsigned char *mask, long len,
               const unsigned char *seed, long seedlen, const EVP_MD *dgst)
{
    long i, outlen = 0;
    unsigned char cnt[4];
    EVP_MD_CTX *c = EVP_MD_CTX_new();
    unsigned char md[EVP_MAX_MD_SIZE];
    int mdlen;
    int rv = -1;

    if (c == NULL)
        goto err;
    mdlen = EVP_MD_size(dgst);
    if (mdlen < 0)
        goto err;
    for (i = 0; outlen < len; i++) {
        cnt[0] = (unsigned char)((i >> 24) & 255);
        cnt[1] = (unsigned char)((i >> 16) & 255);
        cnt[2] = (unsigned char)((i >> 8)) & 255;
        cnt[3] = (unsigned char)(i & 255);
        if (!EVP_DigestInit_ex(c, dgst, NULL)
            || !EVP_DigestUpdate(c, seed, seedlen)
            || !EVP_DigestUpdate(c, cnt, 4))
            goto err;
        if (outlen + mdlen <= len) {
            if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
                goto err;
            outlen += mdlen;
        } else {
            if (!EVP_DigestFinal_ex(c, md, NULL))
                goto err;
            memcpy(mask + outlen, md, len - outlen);
            outlen = len;
        }
    }
    rv = 0;
 err:
    OPENSSL_cleanse(md, sizeof(md));
    EVP_MD_CTX_free(c);
    return rv;
}