rand_vms.c 17.6 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/*
 * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include "e_os.h"

#if defined(OPENSSL_SYS_VMS)
# define __NEW_STARLET 1         /* New starlet definitions since VMS 7.0 */
# include <unistd.h>
# include "internal/cryptlib.h"
# include <openssl/bio.h>
# include <openssl/err.h>
# include <openssl/rand.h>
# include "crypto/rand.h"
# include "rand_local.h"
# include <descrip.h>
# include <dvidef.h>
# include <jpidef.h>
# include <rmidef.h>
# include <syidef.h>
# include <ssdef.h>
# include <starlet.h>
# include <efndef.h>
# include <gen64def.h>
# include <iosbdef.h>
# include <iledef.h>
# include <lib$routines.h>
# ifdef __DECC
#  pragma message disable DOLLARID
# endif

# include <dlfcn.h>              /* SYS$GET_ENTROPY presence */

# ifndef OPENSSL_RAND_SEED_OS
#  error "Unsupported seeding method configured; must be os"
# endif

/*
 * DATA COLLECTION METHOD
 * ======================
 *
 * This is a method to get low quality entropy.
 * It works by collecting all kinds of statistical data that
 * VMS offers and using them as random seed.
 */

/* We need to make sure we have the right size pointer in some cases */
# if __INITIAL_POINTER_SIZE == 64
#  pragma pointer_size save
#  pragma pointer_size 32
# endif
typedef uint32_t *uint32_t__ptr32;
# if __INITIAL_POINTER_SIZE == 64
#  pragma pointer_size restore
# endif

struct item_st {
    short length, code;         /* length is number of bytes */
};

static const struct item_st DVI_item_data[] = {
    {4,   DVI$_ERRCNT},
    {4,   DVI$_REFCNT},
};

static const struct item_st JPI_item_data[] = {
    {4,   JPI$_BUFIO},
    {4,   JPI$_CPUTIM},
    {4,   JPI$_DIRIO},
    {4,   JPI$_IMAGECOUNT},
    {4,   JPI$_PAGEFLTS},
    {4,   JPI$_PID},
    {4,   JPI$_PPGCNT},
    {4,   JPI$_WSPEAK},
    /*
     * Note: the direct result is just a 32-bit address.  However, it points
     * to a list of 4 32-bit words, so we make extra space for them so we can
     * do in-place replacement of values
     */
    {16,  JPI$_FINALEXC},
};

static const struct item_st JPI_item_data_64bit[] = {
    {8,   JPI$_LAST_LOGIN_I},
    {8,   JPI$_LOGINTIM},
};

static const struct item_st RMI_item_data[] = {
    {4,   RMI$_COLPG},
    {4,   RMI$_MWAIT},
    {4,   RMI$_CEF},
    {4,   RMI$_PFW},
    {4,   RMI$_LEF},
    {4,   RMI$_LEFO},
    {4,   RMI$_HIB},
    {4,   RMI$_HIBO},
    {4,   RMI$_SUSP},
    {4,   RMI$_SUSPO},
    {4,   RMI$_FPG},
    {4,   RMI$_COM},
    {4,   RMI$_COMO},
    {4,   RMI$_CUR},
#if defined __alpha
    {4,   RMI$_FRLIST},
    {4,   RMI$_MODLIST},
#endif
    {4,   RMI$_FAULTS},
    {4,   RMI$_PREADS},
    {4,   RMI$_PWRITES},
    {4,   RMI$_PWRITIO},
    {4,   RMI$_PREADIO},
    {4,   RMI$_GVALFLTS},
    {4,   RMI$_WRTINPROG},
    {4,   RMI$_FREFLTS},
    {4,   RMI$_DZROFLTS},
    {4,   RMI$_SYSFAULTS},
    {4,   RMI$_ISWPCNT},
    {4,   RMI$_DIRIO},
    {4,   RMI$_BUFIO},
    {4,   RMI$_MBREADS},
    {4,   RMI$_MBWRITES},
    {4,   RMI$_LOGNAM},
    {4,   RMI$_FCPCALLS},
    {4,   RMI$_FCPREAD},
    {4,   RMI$_FCPWRITE},
    {4,   RMI$_FCPCACHE},
    {4,   RMI$_FCPCPU},
    {4,   RMI$_FCPHIT},
    {4,   RMI$_FCPSPLIT},
    {4,   RMI$_FCPFAULT},
    {4,   RMI$_ENQNEW},
    {4,   RMI$_ENQCVT},
    {4,   RMI$_DEQ},
    {4,   RMI$_BLKAST},
    {4,   RMI$_ENQWAIT},
    {4,   RMI$_ENQNOTQD},
    {4,   RMI$_DLCKSRCH},
    {4,   RMI$_DLCKFND},
    {4,   RMI$_NUMLOCKS},
    {4,   RMI$_NUMRES},
    {4,   RMI$_ARRLOCPK},
    {4,   RMI$_DEPLOCPK},
    {4,   RMI$_ARRTRAPK},
    {4,   RMI$_TRCNGLOS},
    {4,   RMI$_RCVBUFFL},
    {4,   RMI$_ENQNEWLOC},
    {4,   RMI$_ENQNEWIN},
    {4,   RMI$_ENQNEWOUT},
    {4,   RMI$_ENQCVTLOC},
    {4,   RMI$_ENQCVTIN},
    {4,   RMI$_ENQCVTOUT},
    {4,   RMI$_DEQLOC},
    {4,   RMI$_DEQIN},
    {4,   RMI$_DEQOUT},
    {4,   RMI$_BLKLOC},
    {4,   RMI$_BLKIN},
    {4,   RMI$_BLKOUT},
    {4,   RMI$_DIRIN},
    {4,   RMI$_DIROUT},
    /* We currently get a fault when trying these.  TODO: To be figured out. */
#if 0
    {140, RMI$_MSCP_EVERYTHING},   /* 35 32-bit words */
    {152, RMI$_DDTM_ALL},          /* 38 32-bit words */
    {80,  RMI$_TMSCP_EVERYTHING}   /* 20 32-bit words */
#endif
    {4,   RMI$_LPZ_PAGCNT},
    {4,   RMI$_LPZ_HITS},
    {4,   RMI$_LPZ_MISSES},
    {4,   RMI$_LPZ_EXPCNT},
    {4,   RMI$_LPZ_ALLOCF},
    {4,   RMI$_LPZ_ALLOC2},
    {4,   RMI$_ACCESS},
    {4,   RMI$_ALLOC},
    {4,   RMI$_FCPCREATE},
    {4,   RMI$_VOLWAIT},
    {4,   RMI$_FCPTURN},
    {4,   RMI$_FCPERASE},
    {4,   RMI$_OPENS},
    {4,   RMI$_FIDHIT},
    {4,   RMI$_FIDMISS},
    {4,   RMI$_FILHDR_HIT},
    {4,   RMI$_DIRFCB_HIT},
    {4,   RMI$_DIRFCB_MISS},
    {4,   RMI$_DIRDATA_HIT},
    {4,   RMI$_EXTHIT},
    {4,   RMI$_EXTMISS},
    {4,   RMI$_QUOHIT},
    {4,   RMI$_QUOMISS},
    {4,   RMI$_STORAGMAP_HIT},
    {4,   RMI$_VOLLCK},
    {4,   RMI$_SYNCHLCK},
    {4,   RMI$_SYNCHWAIT},
    {4,   RMI$_ACCLCK},
    {4,   RMI$_XQPCACHEWAIT},
    {4,   RMI$_DIRDATA_MISS},
    {4,   RMI$_FILHDR_MISS},
    {4,   RMI$_STORAGMAP_MISS},
    {4,   RMI$_PROCCNTMAX},
    {4,   RMI$_PROCBATCNT},
    {4,   RMI$_PROCINTCNT},
    {4,   RMI$_PROCNETCNT},
    {4,   RMI$_PROCSWITCHCNT},
    {4,   RMI$_PROCBALSETCNT},
    {4,   RMI$_PROCLOADCNT},
    {4,   RMI$_BADFLTS},
    {4,   RMI$_EXEFAULTS},
    {4,   RMI$_HDRINSWAPS},
    {4,   RMI$_HDROUTSWAPS},
    {4,   RMI$_IOPAGCNT},
    {4,   RMI$_ISWPCNTPG},
    {4,   RMI$_OSWPCNT},
    {4,   RMI$_OSWPCNTPG},
    {4,   RMI$_RDFAULTS},
    {4,   RMI$_TRANSFLTS},
    {4,   RMI$_WRTFAULTS},
#if defined __alpha
    {4,   RMI$_USERPAGES},
#endif
    {4,   RMI$_VMSPAGES},
    {4,   RMI$_TTWRITES},
    {4,   RMI$_BUFOBJPAG},
    {4,   RMI$_BUFOBJPAGPEAK},
    {4,   RMI$_BUFOBJPAGS01},
    {4,   RMI$_BUFOBJPAGS2},
    {4,   RMI$_BUFOBJPAGMAXS01},
    {4,   RMI$_BUFOBJPAGMAXS2},
    {4,   RMI$_BUFOBJPAGPEAKS01},
    {4,   RMI$_BUFOBJPAGPEAKS2},
    {4,   RMI$_BUFOBJPGLTMAXS01},
    {4,   RMI$_BUFOBJPGLTMAXS2},
    {4,   RMI$_DLCK_INCMPLT},
    {4,   RMI$_DLCKMSGS_IN},
    {4,   RMI$_DLCKMSGS_OUT},
    {4,   RMI$_MCHKERRS},
    {4,   RMI$_MEMERRS},
};

static const struct item_st RMI_item_data_64bit[] = {
#if defined __ia64
    {8,   RMI$_FRLIST},
    {8,   RMI$_MODLIST},
#endif
    {8,   RMI$_LCKMGR_REQCNT},
    {8,   RMI$_LCKMGR_REQTIME},
    {8,   RMI$_LCKMGR_SPINCNT},
    {8,   RMI$_LCKMGR_SPINTIME},
    {8,   RMI$_CPUINTSTK},
    {8,   RMI$_CPUMPSYNCH},
    {8,   RMI$_CPUKERNEL},
    {8,   RMI$_CPUEXEC},
    {8,   RMI$_CPUSUPER},
    {8,   RMI$_CPUUSER},
#if defined __ia64
    {8,   RMI$_USERPAGES},
#endif
    {8,   RMI$_TQETOTAL},
    {8,   RMI$_TQESYSUB},
    {8,   RMI$_TQEUSRTIMR},
    {8,   RMI$_TQEUSRWAKE},
};

static const struct item_st SYI_item_data[] = {
    {4,   SYI$_PAGEFILE_FREE},
};

/*
 * Input:
 * items_data           - an array of lengths and codes
 * items_data_num       - number of elements in that array
 *
 * Output:
 * items                - pre-allocated ILE3 array to be filled.
 *                        It's assumed to have items_data_num elements plus
 *                        one extra for the terminating NULL element
 * databuffer           - pre-allocated 32-bit word array.
 *
 * Returns the number of elements used in databuffer
 */
static size_t prepare_item_list(const struct item_st *items_input,
                                size_t items_input_num,
                                ILE3 *items,
                                uint32_t__ptr32 databuffer)
{
    size_t data_sz = 0;

    for (; items_input_num-- > 0; items_input++, items++) {

        items->ile3$w_code = items_input->code;
        /* Special treatment of JPI$_FINALEXC */
        if (items->ile3$w_code == JPI$_FINALEXC)
            items->ile3$w_length = 4;
        else
            items->ile3$w_length = items_input->length;

        items->ile3$ps_bufaddr = databuffer;
        items->ile3$ps_retlen_addr = 0;

        databuffer += items_input->length / sizeof(databuffer[0]);
        data_sz += items_input->length;
    }
    /* Terminating NULL entry */
    items->ile3$w_length = items->ile3$w_code = 0;
    items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;

    return data_sz / sizeof(databuffer[0]);
}

static void massage_JPI(ILE3 *items)
{
    /*
     * Special treatment of JPI$_FINALEXC
     * The result of that item's data buffer is a 32-bit address to a list of
     * 4 32-bit words.
     */
    for (; items->ile3$w_length != 0; items++) {
        if (items->ile3$w_code == JPI$_FINALEXC) {
            uint32_t *data = items->ile3$ps_bufaddr;
            uint32_t *ptr = (uint32_t *)*data;
            size_t j;

            /*
             * We know we made space for 4 32-bit words, so we can do in-place
             * replacement.
             */
            for (j = 0; j < 4; j++)
                data[j] = ptr[j];

            break;
        }
    }
}

/*
 * This number expresses how many bits of data contain 1 bit of entropy.
 *
 * For the moment, we assume about 0.05 entropy bits per data bit, or 1
 * bit of entropy per 20 data bits.
 */
#define ENTROPY_FACTOR  20

size_t data_collect_method(RAND_POOL *pool)
{
    ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
    ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
    ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
    ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
    ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
    ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
    union {
        /* This ensures buffer starts at 64 bit boundary */
        uint64_t dummy;
        uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
                        + OSSL_NELEM(RMI_item_data_64bit) * 2
                        + OSSL_NELEM(DVI_item_data)
                        + OSSL_NELEM(JPI_item_data)
                        + OSSL_NELEM(RMI_item_data)
                        + OSSL_NELEM(SYI_item_data)
                        + 4 /* For JPI$_FINALEXC */];
    } data;
    size_t total_elems = 0;
    size_t total_length = 0;
    size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
    size_t bytes_remaining = rand_pool_bytes_remaining(pool);

    /* Take all the 64-bit items first, to ensure proper alignment of data */
    total_elems +=
        prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
                          JPI_items_64bit, &data.buffer[total_elems]);
    total_elems +=
        prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
                          RMI_items_64bit, &data.buffer[total_elems]);
    /* Now the 32-bit items */
    total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
                                     DVI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
                                     JPI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
                                     RMI_items, &data.buffer[total_elems]);
    total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
                                     SYI_items, &data.buffer[total_elems]);
    total_length = total_elems * sizeof(data.buffer[0]);

    /* Fill data.buffer with various info bits from this process */
    {
        uint32_t status;
        uint32_t efn;
        IOSB iosb;
        $DESCRIPTOR(SYSDEVICE,"SYS$SYSDEVICE:");

        if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
                                  0, 0, 0, 0, 0)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        /*
         * The RMI service is a bit special, as there is no synchronous
         * variant, so we MUST create an event flag to synchronise on.
         */
        if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
            lib$signal(iosb.iosb$l_getxxi_status);
            return 0;
        }
        if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
            != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
        if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
            lib$signal(iosb.iosb$l_getxxi_status);
            return 0;
        }
        if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }
    }

    massage_JPI(JPI_items);

    /*
     * If we can't feed the requirements from the caller, we're in deep trouble.
     */
    if (!ossl_assert(total_length >= bytes_needed)) {
        char buf[100];           /* That should be enough */

        BIO_snprintf(buf, sizeof(buf), "Needed: %zu, Available: %zu",
                     bytes_needed, total_length);
        RANDerr(RAND_F_DATA_COLLECT_METHOD, RAND_R_RANDOM_POOL_UNDERFLOW);
        ERR_add_error_data(1, buf);
        return 0;
    }

    /*
     * Try not to overfeed the pool
     */
    if (total_length > bytes_remaining)
        total_length = bytes_remaining;

    /* We give the pessimistic value for the amount of entropy */
    rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
                  8 * total_length / ENTROPY_FACTOR);
    return rand_pool_entropy_available(pool);
}

int rand_pool_add_nonce_data(RAND_POOL *pool)
{
    struct {
        pid_t pid;
        CRYPTO_THREAD_ID tid;
        unsigned __int64 time;
    } data = { 0 };

    /*
     * Add process id, thread id, and a high resolution timestamp
     * (where available, which is OpenVMS v8.4 and up) to ensure that
     * the nonce is unique with high probability for different process
     * instances.
     */
    data.pid = getpid();
    data.tid = CRYPTO_THREAD_get_current_id();
#if __CRTL_VER >= 80400000
    sys$gettim_prec(&data.time);
#else
    sys$gettim((void*)&data.time);
#endif

    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}

/*
 * SYS$GET_ENTROPY METHOD
 * ======================
 *
 * This is a high entropy method based on a new system service that is
 * based on getentropy() from FreeBSD 12.  It's only used if available,
 * and its availability is detected at run-time.
 *
 * We assume that this function provides full entropy random output.
 */
#define PUBLIC_VECTORS "SYS$LIBRARY:SYS$PUBLIC_VECTORS.EXE"
#define GET_ENTROPY "SYS$GET_ENTROPY"

static int get_entropy_address_flag = 0;
static int (*get_entropy_address)(void *buffer, size_t buffer_size) = NULL;
static int init_get_entropy_address(void)
{
    if (get_entropy_address_flag == 0)
        get_entropy_address = dlsym(dlopen(PUBLIC_VECTORS, 0), GET_ENTROPY);
    get_entropy_address_flag = 1;
    return get_entropy_address != NULL;
}

size_t get_entropy_method(RAND_POOL *pool)
{
    /*
     * The documentation says that SYS$GET_ENTROPY will give a maximum of
     * 256 bytes of data.
     */
    unsigned char buffer[256];
    size_t bytes_needed;
    size_t bytes_to_get = 0;
    uint32_t status;

    for (bytes_needed = rand_pool_bytes_needed(pool, 1);
         bytes_needed > 0;
         bytes_needed -= bytes_to_get) {
        bytes_to_get =
            bytes_needed > sizeof(buffer) ? sizeof(buffer) : bytes_needed;

        status = get_entropy_address(buffer, bytes_to_get);
        if (status == SS$_RETRY) {
            /* Set to zero so the loop doesn't diminish |bytes_needed| */
            bytes_to_get = 0;
            /* Should sleep some amount of time */
            continue;
        }

        if (status != SS$_NORMAL) {
            lib$signal(status);
            return 0;
        }

        rand_pool_add(pool, buffer, bytes_to_get, 8 * bytes_to_get);
    }

    return rand_pool_entropy_available(pool);
}

/*
 * MAIN ENTROPY ACQUISITION FUNCTIONS
 * ==================================
 *
 * These functions are called by the RAND / DRBG functions
 */

size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
    if (init_get_entropy_address())
        return get_entropy_method(pool);
    return data_collect_method(pool);
}


int rand_pool_add_additional_data(RAND_POOL *pool)
{
    struct {
        CRYPTO_THREAD_ID tid;
        unsigned __int64 time;
    } data = { 0 };

    /*
     * Add some noise from the thread id and a high resolution timer.
     * The thread id adds a little randomness if the drbg is accessed
     * concurrently (which is the case for the <master> drbg).
     */
    data.tid = CRYPTO_THREAD_get_current_id();
#if __CRTL_VER >= 80400000
    sys$gettim_prec(&data.time);
#else
    sys$gettim((void*)&data.time);
#endif

    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}

int rand_pool_init(void)
{
    return 1;
}

void rand_pool_cleanup(void)
{
}

void rand_pool_keep_random_devices_open(int keep)
{
}

#endif