poly1305_base2_44.c 4.7 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * This module is meant to be used as template for base 2^44 assembly
 * implementation[s]. On side note compiler-generated code is not
 * slower than compiler-generated base 2^64 code on [high-end] x86_64,
 * even though amount of multiplications is 50% higher. Go figure...
 */
#include <stdlib.h>

typedef unsigned char u8;
typedef unsigned int u32;
typedef unsigned long u64;
typedef unsigned __int128 u128;

typedef struct {
    u64 h[3];
    u64 s[2];
    u64 r[3];
} poly1305_internal;

#define POLY1305_BLOCK_SIZE 16

/* pick 64-bit unsigned integer in little endian order */
static u64 U8TOU64(const unsigned char *p)
{
    return (((u64)(p[0] & 0xff)) |
            ((u64)(p[1] & 0xff) << 8) |
            ((u64)(p[2] & 0xff) << 16) |
            ((u64)(p[3] & 0xff) << 24) |
            ((u64)(p[4] & 0xff) << 32) |
            ((u64)(p[5] & 0xff) << 40) |
            ((u64)(p[6] & 0xff) << 48) |
            ((u64)(p[7] & 0xff) << 56));
}

/* store a 64-bit unsigned integer in little endian */
static void U64TO8(unsigned char *p, u64 v)
{
    p[0] = (unsigned char)((v) & 0xff);
    p[1] = (unsigned char)((v >> 8) & 0xff);
    p[2] = (unsigned char)((v >> 16) & 0xff);
    p[3] = (unsigned char)((v >> 24) & 0xff);
    p[4] = (unsigned char)((v >> 32) & 0xff);
    p[5] = (unsigned char)((v >> 40) & 0xff);
    p[6] = (unsigned char)((v >> 48) & 0xff);
    p[7] = (unsigned char)((v >> 56) & 0xff);
}

int poly1305_init(void *ctx, const unsigned char key[16])
{
    poly1305_internal *st = (poly1305_internal *)ctx;
    u64 r0, r1;

    /* h = 0 */
    st->h[0] = 0;
    st->h[1] = 0;
    st->h[2] = 0;

    r0 = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
    r1 = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;

    /* break r1:r0 to three 44-bit digits, masks are 1<<44-1 */
    st->r[0] = r0 & 0x0fffffffffff;
    st->r[1] = ((r0 >> 44) | (r1 << 20))  & 0x0fffffffffff;
    st->r[2] = (r1 >> 24);

    st->s[0] = (st->r[1] + (st->r[1] << 2)) << 2;
    st->s[1] = (st->r[2] + (st->r[2] << 2)) << 2;

    return 0;
}

void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
                     u32 padbit)
{
    poly1305_internal *st = (poly1305_internal *)ctx;
    u64 r0, r1, r2;
    u64 s1, s2;
    u64 h0, h1, h2, c;
    u128 d0, d1, d2;
    u64 pad = (u64)padbit << 40;

    r0 = st->r[0];
    r1 = st->r[1];
    r2 = st->r[2];

    s1 = st->s[0];
    s2 = st->s[1];

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];

    while (len >= POLY1305_BLOCK_SIZE) {
        u64 m0, m1;

        m0 = U8TOU64(inp + 0);
        m1 = U8TOU64(inp + 8);

        /* h += m[i], m[i] is broken to 44-bit digits */
        h0 += m0 & 0x0fffffffffff;
        h1 += ((m0 >> 44) | (m1 << 20))  & 0x0fffffffffff;
        h2 +=  (m1 >> 24) + pad;

        /* h *= r "%" p, where "%" stands for "partial remainder" */
        d0 = ((u128)h0 * r0) + ((u128)h1 * s2) + ((u128)h2 * s1);
        d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + ((u128)h2 * s2);
        d2 = ((u128)h0 * r2) + ((u128)h1 * r1) + ((u128)h2 * r0);

        /* "lazy" reduction step */
        h0 = (u64)d0 & 0x0fffffffffff;
        h1 = (u64)(d1 += (u64)(d0 >> 44)) & 0x0fffffffffff;
        h2 = (u64)(d2 += (u64)(d1 >> 44)) & 0x03ffffffffff; /* last 42 bits */

        c = (d2 >> 42);
        h0 += c + (c << 2);

        inp += POLY1305_BLOCK_SIZE;
        len -= POLY1305_BLOCK_SIZE;
    }

    st->h[0] = h0;
    st->h[1] = h1;
    st->h[2] = h2;
}

void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
{
    poly1305_internal *st = (poly1305_internal *) ctx;
    u64 h0, h1, h2;
    u64 g0, g1, g2;
    u128 t;
    u64 mask;

    h0 = st->h[0];
    h1 = st->h[1];
    h2 = st->h[2];

    /* after "lazy" reduction, convert 44+bit digits to 64-bit ones */
    h0 = (u64)(t = (u128)h0 + (h1 << 44));              h1 >>= 20;
    h1 = (u64)(t = (u128)h1 + (h2 << 24) + (t >> 64));  h2 >>= 40;
    h2 += (u64)(t >> 64);

    /* compare to modulus by computing h + -p */
    g0 = (u64)(t = (u128)h0 + 5);
    g1 = (u64)(t = (u128)h1 + (t >> 64));
    g2 = h2 + (u64)(t >> 64);

    /* if there was carry into 131st bit, h1:h0 = g1:g0 */
    mask = 0 - (g2 >> 2);
    g0 &= mask;
    g1 &= mask;
    mask = ~mask;
    h0 = (h0 & mask) | g0;
    h1 = (h1 & mask) | g1;

    /* mac = (h + nonce) % (2^128) */
    h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
    h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));

    U64TO8(mac + 0, h0);
    U64TO8(mac + 8, h1);
}