ghash-sparcv9.pl 12.7 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
#! /usr/bin/env perl
# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# March 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
# and are expressed in cycles per processed byte, less is better:
#
#		gcc 3.3.x	cc 5.2		this assembler
#
# 32-bit build	81.4		43.3		12.6	(+546%/+244%)
# 64-bit build	20.2		21.2		12.6	(+60%/+68%)
#
# Here is data collected on UltraSPARC T1 system running Linux:
#
#		gcc 4.4.1			this assembler
#
# 32-bit build	566				50	(+1000%)
# 64-bit build	56				50	(+12%)
#
# I don't quite understand why difference between 32-bit and 64-bit
# compiler-generated code is so big. Compilers *were* instructed to
# generate code for UltraSPARC and should have used 64-bit registers
# for Z vector (see C code) even in 32-bit build... Oh well, it only
# means more impressive improvement coefficients for this assembler
# module;-) Loops are aggressively modulo-scheduled in respect to
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
#
# October 2012
#
# Add VIS3 lookup-table-free implementation using polynomial
# multiplication xmulx[hi] and extended addition addxc[cc]
# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
# saturates at ~15.5x single-process result on 8-core processor,
# or ~20.5GBps per 2.85GHz socket.

$output=pop;
open STDOUT,">$output";

$frame="STACK_FRAME";
$bias="STACK_BIAS";

$Zhi="%o0";	# 64-bit values
$Zlo="%o1";
$Thi="%o2";
$Tlo="%o3";
$rem="%o4";
$tmp="%o5";

$nhi="%l0";	# small values and pointers
$nlo="%l1";
$xi0="%l2";
$xi1="%l3";
$rem_4bit="%l4";
$remi="%l5";
$Htblo="%l6";
$cnt="%l7";

$Xi="%i0";	# input argument block
$Htbl="%i1";
$inp="%i2";
$len="%i3";

$code.=<<___;
#include "sparc_arch.h"

#ifdef  __arch64__
.register	%g2,#scratch
.register	%g3,#scratch
#endif

.section	".text",#alloc,#execinstr

.align	64
rem_4bit:
	.long	`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
	.long	`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
	.long	`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
	.long	`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
.type	rem_4bit,#object
.size	rem_4bit,(.-rem_4bit)

.globl	gcm_ghash_4bit
.align	32
gcm_ghash_4bit:
	save	%sp,-$frame,%sp
	ldub	[$inp+15],$nlo
	ldub	[$Xi+15],$xi0
	ldub	[$Xi+14],$xi1
	add	$len,$inp,$len
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

.Louter:
	xor	$xi0,$nlo,$nlo
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$inp+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	xor	$xi1,$nlo,$nlo
	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lghash_inner
	sll	$nlo,4,$nlo
.align	32
.Lghash_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	ldub	[$Xi+$cnt],$xi1
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$xi1,$nlo,$nlo
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lghash_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi

	add	$inp,16,$inp
	cmp	$inp,$len
	be,pn	SIZE_T_CC,.Ldone
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+15],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]
	srl	$Zlo,8,$xi1
	and	$Zlo,0xff,$xi0
	ba	.Louter
	and	$xi1,0xff,$xi1
.align	32
.Ldone:
	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_ghash_4bit,#function
.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)
___

undef $inp;
undef $len;

$code.=<<___;
.globl	gcm_gmult_4bit
.align	32
gcm_gmult_4bit:
	save	%sp,-$frame,%sp
	ldub	[$Xi+15],$nlo
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$Xi+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lgmult_inner
	sll	$nlo,4,$nlo
.align	32
.Lgmult_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$Xi+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lgmult_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_gmult_4bit,#function
.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)
___

{{{
# Straightforward 128x128-bit multiplication using Karatsuba algorithm
# followed by pair of 64-bit reductions [with a shortcut in first one,
# which allowed to break dependency between reductions and remove one
# multiplication from critical path]. While it might be suboptimal
# with regard to sheer number of multiplications, other methods [such
# as aggregate reduction] would require more 64-bit registers, which
# we don't have in 32-bit application context.

($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));

($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
	(map("%o$_",(0..5,7)),map("%g$_",(1..5)));

($shl,$shr)=map("%l$_",(0..7));

# For details regarding "twisted H" see ghash-x86.pl.
$code.=<<___;
.globl	gcm_init_vis3
.align	32
gcm_init_vis3:
	save	%sp,-$frame,%sp

	ldx	[%i1+0],$Hhi
	ldx	[%i1+8],$Hlo
	mov	0xE1,$Xhi
	mov	1,$Xlo
	sllx	$Xhi,57,$Xhi
	srax	$Hhi,63,$C0		! broadcast carry
	addcc	$Hlo,$Hlo,$Hlo		! H<<=1
	addxc	$Hhi,$Hhi,$Hhi
	and	$C0,$Xlo,$Xlo
	and	$C0,$Xhi,$Xhi
	xor	$Xlo,$Hlo,$Hlo
	xor	$Xhi,$Hhi,$Hhi
	stx	$Hlo,[%i0+8]		! save twisted H
	stx	$Hhi,[%i0+0]

	sethi	%hi(0xA0406080),$V
	sethi	%hi(0x20C0E000),%l0
	or	$V,%lo(0xA0406080),$V
	or	%l0,%lo(0x20C0E000),%l0
	sllx	$V,32,$V
	or	%l0,$V,$V		! (0xE0·i)&0xff=0xA040608020C0E000
	stx	$V,[%i0+16]

	ret
	restore
.type	gcm_init_vis3,#function
.size	gcm_init_vis3,.-gcm_init_vis3

.globl	gcm_gmult_vis3
.align	32
gcm_gmult_vis3:
	save	%sp,-$frame,%sp

	ldx	[$Xip+8],$Xlo		! load Xi
	ldx	[$Xip+0],$Xhi
	ldx	[$Htable+8],$Hlo	! load twisted H
	ldx	[$Htable+0],$Hhi

	mov	0xE1,%l7
	sllx	%l7,57,$xE1		! 57 is not a typo
	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000

	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
	xmulx	$Xlo,$Hlo,$C0
	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
	xmulx	$C2,$Hhl,$C1
	xmulxhi	$Xlo,$Hlo,$Xlo
	xmulxhi	$C2,$Hhl,$C2
	xmulxhi	$Xhi,$Hhi,$C3
	xmulx	$Xhi,$Hhi,$Xhi

	sll	$C0,3,$sqr
	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
	xor	$C0,$sqr,$sqr
	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]

	xor	$C0,$C1,$C1		! Karatsuba post-processing
	xor	$Xlo,$C2,$C2
	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
	xor	$C3,$C2,$C2
	xor	$Xlo,$C1,$C1
	xor	$Xhi,$C2,$C2
	xor	$Xhi,$C1,$C1

	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
	 xor	$C0,$C2,$C2
	xmulx	$C1,$xE1,$C0
	 xor	$C1,$C3,$C3
	xmulxhi	$C1,$xE1,$C1

	xor	$Xlo,$C2,$C2
	xor	$C0,$C2,$C2
	xor	$C1,$C3,$C3

	stx	$C2,[$Xip+8]		! save Xi
	stx	$C3,[$Xip+0]

	ret
	restore
.type	gcm_gmult_vis3,#function
.size	gcm_gmult_vis3,.-gcm_gmult_vis3

.globl	gcm_ghash_vis3
.align	32
gcm_ghash_vis3:
	save	%sp,-$frame,%sp
	nop
	srln	$len,0,$len		! needed on v8+, "nop" on v9

	ldx	[$Xip+8],$C2		! load Xi
	ldx	[$Xip+0],$C3
	ldx	[$Htable+8],$Hlo	! load twisted H
	ldx	[$Htable+0],$Hhi

	mov	0xE1,%l7
	sllx	%l7,57,$xE1		! 57 is not a typo
	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000

	and	$inp,7,$shl
	andn	$inp,7,$inp
	sll	$shl,3,$shl
	prefetch [$inp+63], 20
	sub	%g0,$shl,$shr

	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
.Loop:
	ldx	[$inp+8],$Xlo
	brz,pt	$shl,1f
	ldx	[$inp+0],$Xhi

	ldx	[$inp+16],$C1		! align data
	srlx	$Xlo,$shr,$C0
	sllx	$Xlo,$shl,$Xlo
	sllx	$Xhi,$shl,$Xhi
	srlx	$C1,$shr,$C1
	or	$C0,$Xhi,$Xhi
	or	$C1,$Xlo,$Xlo
1:
	add	$inp,16,$inp
	sub	$len,16,$len
	xor	$C2,$Xlo,$Xlo
	xor	$C3,$Xhi,$Xhi
	prefetch [$inp+63], 20

	xmulx	$Xlo,$Hlo,$C0
	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
	xmulx	$C2,$Hhl,$C1
	xmulxhi	$Xlo,$Hlo,$Xlo
	xmulxhi	$C2,$Hhl,$C2
	xmulxhi	$Xhi,$Hhi,$C3
	xmulx	$Xhi,$Hhi,$Xhi

	sll	$C0,3,$sqr
	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
	xor	$C0,$sqr,$sqr
	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]

	xor	$C0,$C1,$C1		! Karatsuba post-processing
	xor	$Xlo,$C2,$C2
	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
	xor	$C3,$C2,$C2
	xor	$Xlo,$C1,$C1
	xor	$Xhi,$C2,$C2
	xor	$Xhi,$C1,$C1

	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
	 xor	$C0,$C2,$C2
	xmulx	$C1,$xE1,$C0
	 xor	$C1,$C3,$C3
	xmulxhi	$C1,$xE1,$C1

	xor	$Xlo,$C2,$C2
	xor	$C0,$C2,$C2
	brnz,pt	$len,.Loop
	xor	$C1,$C3,$C3

	stx	$C2,[$Xip+8]		! save Xi
	stx	$C3,[$Xip+0]

	ret
	restore
.type	gcm_ghash_vis3,#function
.size	gcm_ghash_vis3,.-gcm_ghash_vis3
___
}}}
$code.=<<___;
.asciz	"GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align	4
___


# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = (	"addxc"		=> 0x011,
		"addxccc"	=> 0x013,
		"xmulx"		=> 0x115,
		"xmulxhi"	=> 0x116	);

    $ref = "$mnemonic\t$rs1,$rs2,$rd";

    if ($opf=$visopf{$mnemonic}) {
	foreach ($rs1,$rs2,$rd) {
	    return $ref if (!/%([goli])([0-9])/);
	    $_=$bias{$1}+$2;
	}

	return	sprintf ".word\t0x%08x !%s",
			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
			$ref;
    } else {
	return $ref;
    }
}

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/ge;

	s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
		&unvis3($1,$2,$3,$4)
	 /ge;

	print $_,"\n";
}

close STDOUT or die "error closing STDOUT: $!";