ghash-c64xplus.pl 7.3 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
#! /usr/bin/env perl
# Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# December 2011
#
# The module implements GCM GHASH function and underlying single
# multiplication operation in GF(2^128). Even though subroutines
# have _4bit suffix, they are not using any tables, but rely on
# hardware Galois Field Multiply support. Streamed GHASH processes
# byte in ~7 cycles, which is >6x faster than "4-bit" table-driven
# code compiled with TI's cl6x 6.0 with -mv6400+ -o2 flags. We are
# comparing apples vs. oranges, but compiler surely could have done
# better, because theoretical [though not necessarily achievable]
# estimate for "4-bit" table-driven implementation is ~12 cycles.

while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";

($Xip,$Htable,$inp,$len)=("A4","B4","A6","B6");	# arguments

($Z0,$Z1,$Z2,$Z3,	$H0, $H1, $H2, $H3,
			$H0x,$H1x,$H2x,$H3x)=map("A$_",(16..27));
($H01u,$H01y,$H2u,$H3u,	$H0y,$H1y,$H2y,$H3y,
			$H0z,$H1z,$H2z,$H3z)=map("B$_",(16..27));
($FF000000,$E10000)=("B30","B31");
($xip,$x0,$x1,$xib)=map("B$_",(6..9));	# $xip zaps $len
 $xia="A9";
($rem,$res)=("B4","B5");		# $rem zaps $Htable

$code.=<<___;
	.text

	.if	.ASSEMBLER_VERSION<7000000
	.asg	0,__TI_EABI__
	.endif
	.if	__TI_EABI__
	.asg	gcm_gmult_1bit,_gcm_gmult_1bit
	.asg	gcm_gmult_4bit,_gcm_gmult_4bit
	.asg	gcm_ghash_4bit,_gcm_ghash_4bit
	.endif

	.asg	B3,RA

	.if	0
	.global	_gcm_gmult_1bit
_gcm_gmult_1bit:
	ADDAD	$Htable,2,$Htable
	.endif
	.global	_gcm_gmult_4bit
_gcm_gmult_4bit:
	.asmfunc
	LDDW	*${Htable}[-1],$H1:$H0	; H.lo
	LDDW	*${Htable}[-2],$H3:$H2	; H.hi
||	MV	$Xip,${xip}		; reassign Xi
||	MVK	15,B1			; SPLOOPD constant

	MVK	0xE1,$E10000
||	LDBU	*++${xip}[15],$x1	; Xi[15]
	MVK	0xFF,$FF000000
||	LDBU	*--${xip},$x0		; Xi[14]
	SHL	$E10000,16,$E10000	; [pre-shifted] reduction polynomial
	SHL	$FF000000,24,$FF000000	; upper byte mask
||	BNOP	ghash_loop?
||	MVK	1,B0			; take a single spin

	PACKH2	$H0,$H1,$xia		; pack H0' and H1's upper bytes
	AND	$H2,$FF000000,$H2u	; H2's upper byte
	AND	$H3,$FF000000,$H3u	; H3's upper byte
||	SHRU	$H2u,8,$H2u
	SHRU	$H3u,8,$H3u
||	ZERO	$Z1:$Z0
	SHRU2	$xia,8,$H01u
||	ZERO	$Z3:$Z2
	.endasmfunc

	.global	_gcm_ghash_4bit
_gcm_ghash_4bit:
	.asmfunc
	LDDW	*${Htable}[-1],$H1:$H0	; H.lo
||	SHRU	$len,4,B0		; reassign len
	LDDW	*${Htable}[-2],$H3:$H2	; H.hi
||	MV	$Xip,${xip}		; reassign Xi
||	MVK	15,B1			; SPLOOPD constant

	MVK	0xE1,$E10000
|| [B0]	LDNDW	*${inp}[1],$H1x:$H0x
	MVK	0xFF,$FF000000
|| [B0]	LDNDW	*${inp}++[2],$H3x:$H2x
	SHL	$E10000,16,$E10000	; [pre-shifted] reduction polynomial
||	LDDW	*${xip}[1],$Z1:$Z0
	SHL	$FF000000,24,$FF000000	; upper byte mask
||	LDDW	*${xip}[0],$Z3:$Z2

	PACKH2	$H0,$H1,$xia		; pack H0' and H1's upper bytes
	AND	$H2,$FF000000,$H2u	; H2's upper byte
	AND	$H3,$FF000000,$H3u	; H3's upper byte
||	SHRU	$H2u,8,$H2u
	SHRU	$H3u,8,$H3u
	SHRU2	$xia,8,$H01u

|| [B0]	XOR	$H0x,$Z0,$Z0		; Xi^=inp
|| [B0]	XOR	$H1x,$Z1,$Z1
	.if	.LITTLE_ENDIAN
   [B0]	XOR	$H2x,$Z2,$Z2
|| [B0]	XOR	$H3x,$Z3,$Z3
|| [B0]	SHRU	$Z1,24,$xia		; Xi[15], avoid cross-path stall
	STDW	$Z1:$Z0,*${xip}[1]
|| [B0]	SHRU	$Z1,16,$x0		; Xi[14]
|| [B0]	ZERO	$Z1:$Z0
	.else
   [B0]	XOR	$H2x,$Z2,$Z2
|| [B0]	XOR	$H3x,$Z3,$Z3
|| [B0]	MV	$Z0,$xia		; Xi[15], avoid cross-path stall
	STDW	$Z1:$Z0,*${xip}[1]
|| [B0] SHRU	$Z0,8,$x0		; Xi[14]
|| [B0]	ZERO	$Z1:$Z0
	.endif
	STDW	$Z3:$Z2,*${xip}[0]
|| [B0]	ZERO	$Z3:$Z2
|| [B0]	MV	$xia,$x1
   [B0]	ADDK	14,${xip}

ghash_loop?:
	SPLOOPD	6			; 6*16+7
||	MVC	B1,ILC
|| [B0]	SUB	B0,1,B0
||	ZERO	A0
||	ADD	$x1,$x1,$xib		; SHL	$x1,1,$xib
||	SHL	$x1,1,$xia
___

########____________________________
#  0    D2.     M1          M2      |
#  1            M1                  |
#  2            M1          M2      |
#  3        D1. M1          M2      |
#  4        S1. L1                  |
#  5    S2  S1x L1          D2  L2  |____________________________
#  6/0          L1  S1      L2  S2x |D2.     M1          M2      |
#  7/1          L1  S1  D1x S2  M2  |        M1                  |
#  8/2              S1  L1x S2      |        M1          M2      |
#  9/3              S1  L1x         |    D1. M1          M2      |
# 10/4                  D1x         |    S1. L1                  |
# 11/5                              |S2  S1x L1          D2  L2  |____________
# 12/6/0                D1x       __|        L1  S1      L2  S2x |D2.     ....
#    7/1                                     L1  S1  D1x S2  M2  |        ....
#    8/2                                         S1  L1x S2      |        ....
#####...                                         ................|............
$code.=<<___;
	XORMPY	$H0,$xia,$H0x		; 0	; H·(Xi[i]<<1)
||	XORMPY	$H01u,$xib,$H01y
|| [A0]	LDBU	*--${xip},$x0
	XORMPY	$H1,$xia,$H1x		; 1
	XORMPY	$H2,$xia,$H2x		; 2
||	XORMPY	$H2u,$xib,$H2y
	XORMPY	$H3,$xia,$H3x		; 3
||	XORMPY	$H3u,$xib,$H3y
||[!A0]	MVK.D	15,A0				; *--${xip} counter
	XOR.L	$H0x,$Z0,$Z0		; 4	; Z^=H·(Xi[i]<<1)
|| [A0]	SUB.S	A0,1,A0
	XOR.L	$H1x,$Z1,$Z1		; 5
||	AND.D	$H01y,$FF000000,$H0z
||	SWAP2.L	$H01y,$H1y		;	; SHL	$H01y,16,$H1y
||	SHL	$x0,1,$xib
||	SHL	$x0,1,$xia

	XOR.L	$H2x,$Z2,$Z2		; 6/0	; [0,0] in epilogue
||	SHL	$Z0,1,$rem		;	; rem=Z<<1
||	SHRMB.S	$Z1,$Z0,$Z0		;	; Z>>=8
||	AND.L	$H1y,$FF000000,$H1z
	XOR.L	$H3x,$Z3,$Z3		; 7/1
||	SHRMB.S	$Z2,$Z1,$Z1
||	XOR.D	$H0z,$Z0,$Z0			; merge upper byte products
||	AND.S	$H2y,$FF000000,$H2z
||	XORMPY	$E10000,$rem,$res	;	; implicit rem&0x1FE
	XOR.L	$H1z,$Z1,$Z1		; 8/2
||	SHRMB.S	$Z3,$Z2,$Z2
||	AND.S	$H3y,$FF000000,$H3z
	XOR.L	$H2z,$Z2,$Z2		; 9/3
||	SHRU	$Z3,8,$Z3
	XOR.D	$H3z,$Z3,$Z3		; 10/4
	NOP				; 11/5

	SPKERNEL 0,2
||	XOR.D	$res,$Z3,$Z3		; 12/6/0; Z^=res

	; input pre-fetch is possible where D1 slot is available...
   [B0]	LDNDW	*${inp}[1],$H1x:$H0x	; 8/-
   [B0]	LDNDW	*${inp}++[2],$H3x:$H2x	; 9/-
	NOP				; 10/-
	.if	.LITTLE_ENDIAN
	SWAP2	$Z0,$Z1			; 11/-
||	SWAP4	$Z1,$Z0
	SWAP4	$Z1,$Z1			; 12/-
||	SWAP2	$Z0,$Z0
	SWAP2	$Z2,$Z3
||	SWAP4	$Z3,$Z2
||[!B0]	BNOP	RA
	SWAP4	$Z3,$Z3
||	SWAP2	$Z2,$Z2
|| [B0]	BNOP	ghash_loop?
   [B0]	XOR	$H0x,$Z0,$Z0		; Xi^=inp
|| [B0]	XOR	$H1x,$Z1,$Z1
   [B0]	XOR	$H2x,$Z2,$Z2
|| [B0]	XOR	$H3x,$Z3,$Z3
|| [B0]	SHRU	$Z1,24,$xia		; Xi[15], avoid cross-path stall
	STDW	$Z1:$Z0,*${xip}[1]
|| [B0]	SHRU	$Z1,16,$x0		; Xi[14]
|| [B0]	ZERO	$Z1:$Z0
	.else
  [!B0]	BNOP	RA			; 11/-
   [B0]	BNOP	ghash_loop?		; 12/-
   [B0]	XOR	$H0x,$Z0,$Z0		; Xi^=inp
|| [B0]	XOR	$H1x,$Z1,$Z1
   [B0]	XOR	$H2x,$Z2,$Z2
|| [B0]	XOR	$H3x,$Z3,$Z3
|| [B0]	MV	$Z0,$xia		; Xi[15], avoid cross-path stall
	STDW	$Z1:$Z0,*${xip}[1]
|| [B0] SHRU	$Z0,8,$x0		; Xi[14]
|| [B0]	ZERO	$Z1:$Z0
	.endif
	STDW	$Z3:$Z2,*${xip}[0]
|| [B0]	ZERO	$Z3:$Z2
|| [B0]	MV	$xia,$x1
   [B0]	ADDK	14,${xip}
	.endasmfunc

	.sect	.const
	.cstring "GHASH for C64x+, CRYPTOGAMS by <appro\@openssl.org>"
	.align	4
___

print $code;
close STDOUT or die "error closing STDOUT: $!";