ecp_nistp256.c 73.8 KB
Newer Older
C
code4lala 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/* Copyright 2011 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 *
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
 *
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
 * work which got its smarts from Daniel J. Bernstein's work on the same.
 */

#include <openssl/opensslconf.h>
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
NON_EMPTY_TRANSLATION_UNIT
#else

# include <stdint.h>
# include <string.h>
# include <openssl/err.h>
# include "ec_local.h"

# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
  /* even with gcc, the typedef won't work for 32-bit platforms */
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
                                 * platforms */
typedef __int128_t int128_t;
# else
#  error "Your compiler doesn't appear to support 128-bit integer types"
# endif

typedef uint8_t u8;
typedef uint32_t u32;
typedef uint64_t u64;

/*
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
 * can serialise an element of this field into 32 bytes. We call this an
 * felem_bytearray.
 */

typedef u8 felem_bytearray[32];

/*
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
 * values are big-endian.
 */
static const felem_bytearray nistp256_curve_params[5] = {
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
    {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
     0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
     0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
     0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
    {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
     0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
     0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
     0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
    {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
     0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
     0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
     0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
};

/*-
 * The representation of field elements.
 * ------------------------------------
 *
 * We represent field elements with either four 128-bit values, eight 128-bit
 * values, or four 64-bit values. The field element represented is:
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
 * or:
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
 *
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
 * with the least significant bits of the next.
 *
 * A field element with four limbs is an 'felem'. One with eight limbs is a
 * 'longfelem'
 *
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
 * values are used as intermediate values before multiplication.
 */

# define NLIMBS 4

typedef uint128_t limb;
typedef limb felem[NLIMBS];
typedef limb longfelem[NLIMBS * 2];
typedef u64 smallfelem[NLIMBS];

/* This is the value of the prime as four 64-bit words, little-endian. */
static const u64 kPrime[4] =
    { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
static const u64 bottom63bits = 0x7ffffffffffffffful;

/*
 * bin32_to_felem takes a little-endian byte array and converts it into felem
 * form. This assumes that the CPU is little-endian.
 */
static void bin32_to_felem(felem out, const u8 in[32])
{
    out[0] = *((u64 *)&in[0]);
    out[1] = *((u64 *)&in[8]);
    out[2] = *((u64 *)&in[16]);
    out[3] = *((u64 *)&in[24]);
}

/*
 * smallfelem_to_bin32 takes a smallfelem and serialises into a little
 * endian, 32 byte array. This assumes that the CPU is little-endian.
 */
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
{
    *((u64 *)&out[0]) = in[0];
    *((u64 *)&out[8]) = in[1];
    *((u64 *)&out[16]) = in[2];
    *((u64 *)&out[24]) = in[3];
}

/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
static int BN_to_felem(felem out, const BIGNUM *bn)
{
    felem_bytearray b_out;
    int num_bytes;

    if (BN_is_negative(bn)) {
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
        return 0;
    }
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
    if (num_bytes < 0) {
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
        return 0;
    }
    bin32_to_felem(out, b_out);
    return 1;
}

/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
{
    felem_bytearray b_out;
    smallfelem_to_bin32(b_out, in);
    return BN_lebin2bn(b_out, sizeof(b_out), out);
}

/*-
 * Field operations
 * ----------------
 */

static void smallfelem_one(smallfelem out)
{
    out[0] = 1;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
}

static void smallfelem_assign(smallfelem out, const smallfelem in)
{
    out[0] = in[0];
    out[1] = in[1];
    out[2] = in[2];
    out[3] = in[3];
}

static void felem_assign(felem out, const felem in)
{
    out[0] = in[0];
    out[1] = in[1];
    out[2] = in[2];
    out[3] = in[3];
}

/* felem_sum sets out = out + in. */
static void felem_sum(felem out, const felem in)
{
    out[0] += in[0];
    out[1] += in[1];
    out[2] += in[2];
    out[3] += in[3];
}

/* felem_small_sum sets out = out + in. */
static void felem_small_sum(felem out, const smallfelem in)
{
    out[0] += in[0];
    out[1] += in[1];
    out[2] += in[2];
    out[3] += in[3];
}

/* felem_scalar sets out = out * scalar */
static void felem_scalar(felem out, const u64 scalar)
{
    out[0] *= scalar;
    out[1] *= scalar;
    out[2] *= scalar;
    out[3] *= scalar;
}

/* longfelem_scalar sets out = out * scalar */
static void longfelem_scalar(longfelem out, const u64 scalar)
{
    out[0] *= scalar;
    out[1] *= scalar;
    out[2] *= scalar;
    out[3] *= scalar;
    out[4] *= scalar;
    out[5] *= scalar;
    out[6] *= scalar;
    out[7] *= scalar;
}

# define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
# define two105 (((limb)1) << 105)
# define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)

/* zero105 is 0 mod p */
static const felem zero105 =
    { two105m41m9, two105, two105m41p9, two105m41p9 };

/*-
 * smallfelem_neg sets |out| to |-small|
 * On exit:
 *   out[i] < out[i] + 2^105
 */
static void smallfelem_neg(felem out, const smallfelem small)
{
    /* In order to prevent underflow, we subtract from 0 mod p. */
    out[0] = zero105[0] - small[0];
    out[1] = zero105[1] - small[1];
    out[2] = zero105[2] - small[2];
    out[3] = zero105[3] - small[3];
}

/*-
 * felem_diff subtracts |in| from |out|
 * On entry:
 *   in[i] < 2^104
 * On exit:
 *   out[i] < out[i] + 2^105
 */
static void felem_diff(felem out, const felem in)
{
    /*
     * In order to prevent underflow, we add 0 mod p before subtracting.
     */
    out[0] += zero105[0];
    out[1] += zero105[1];
    out[2] += zero105[2];
    out[3] += zero105[3];

    out[0] -= in[0];
    out[1] -= in[1];
    out[2] -= in[2];
    out[3] -= in[3];
}

# define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
# define two107 (((limb)1) << 107)
# define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)

/* zero107 is 0 mod p */
static const felem zero107 =
    { two107m43m11, two107, two107m43p11, two107m43p11 };

/*-
 * An alternative felem_diff for larger inputs |in|
 * felem_diff_zero107 subtracts |in| from |out|
 * On entry:
 *   in[i] < 2^106
 * On exit:
 *   out[i] < out[i] + 2^107
 */
static void felem_diff_zero107(felem out, const felem in)
{
    /*
     * In order to prevent underflow, we add 0 mod p before subtracting.
     */
    out[0] += zero107[0];
    out[1] += zero107[1];
    out[2] += zero107[2];
    out[3] += zero107[3];

    out[0] -= in[0];
    out[1] -= in[1];
    out[2] -= in[2];
    out[3] -= in[3];
}

/*-
 * longfelem_diff subtracts |in| from |out|
 * On entry:
 *   in[i] < 7*2^67
 * On exit:
 *   out[i] < out[i] + 2^70 + 2^40
 */
static void longfelem_diff(longfelem out, const longfelem in)
{
    static const limb two70m8p6 =
        (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
    static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
    static const limb two70 = (((limb) 1) << 70);
    static const limb two70m40m38p6 =
        (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
        (((limb) 1) << 6);
    static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);

    /* add 0 mod p to avoid underflow */
    out[0] += two70m8p6;
    out[1] += two70p40;
    out[2] += two70;
    out[3] += two70m40m38p6;
    out[4] += two70m6;
    out[5] += two70m6;
    out[6] += two70m6;
    out[7] += two70m6;

    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
    out[0] -= in[0];
    out[1] -= in[1];
    out[2] -= in[2];
    out[3] -= in[3];
    out[4] -= in[4];
    out[5] -= in[5];
    out[6] -= in[6];
    out[7] -= in[7];
}

# define two64m0 (((limb)1) << 64) - 1
# define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
# define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
# define two64m32 (((limb)1) << 64) - (((limb)1) << 32)

/* zero110 is 0 mod p */
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };

/*-
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
 * minimal as the value may be greater than p.
 *
 * On entry:
 *   in[i] < 2^109
 * On exit:
 *   out[i] < 2^64
 */
static void felem_shrink(smallfelem out, const felem in)
{
    felem tmp;
    u64 a, b, mask;
    u64 high, low;
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */

    /* Carry 2->3 */
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
    /* tmp[3] < 2^110 */

    tmp[2] = zero110[2] + (u64)in[2];
    tmp[0] = zero110[0] + in[0];
    tmp[1] = zero110[1] + in[1];
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */

    /*
     * We perform two partial reductions where we eliminate the high-word of
     * tmp[3]. We don't update the other words till the end.
     */
    a = tmp[3] >> 64;           /* a < 2^46 */
    tmp[3] = (u64)tmp[3];
    tmp[3] -= a;
    tmp[3] += ((limb) a) << 32;
    /* tmp[3] < 2^79 */

    b = a;
    a = tmp[3] >> 64;           /* a < 2^15 */
    b += a;                     /* b < 2^46 + 2^15 < 2^47 */
    tmp[3] = (u64)tmp[3];
    tmp[3] -= a;
    tmp[3] += ((limb) a) << 32;
    /* tmp[3] < 2^64 + 2^47 */

    /*
     * This adjusts the other two words to complete the two partial
     * reductions.
     */
    tmp[0] += b;
    tmp[1] -= (((limb) b) << 32);

    /*
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
     * conditionally subtract kPrime if tmp[3] is large enough.
     */
    high = (u64)(tmp[3] >> 64);
    /* As tmp[3] < 2^65, high is either 1 or 0 */
    high = 0 - high;
    /*-
     * high is:
     *   all ones   if the high word of tmp[3] is 1
     *   all zeros  if the high word of tmp[3] if 0
     */
    low = (u64)tmp[3];
    mask = 0 - (low >> 63);
    /*-
     * mask is:
     *   all ones   if the MSB of low is 1
     *   all zeros  if the MSB of low if 0
     */
    low &= bottom63bits;
    low -= kPrime3Test;
    /* if low was greater than kPrime3Test then the MSB is zero */
    low = ~low;
    low = 0 - (low >> 63);
    /*-
     * low is:
     *   all ones   if low was > kPrime3Test
     *   all zeros  if low was <= kPrime3Test
     */
    mask = (mask & low) | high;
    tmp[0] -= mask & kPrime[0];
    tmp[1] -= mask & kPrime[1];
    /* kPrime[2] is zero, so omitted */
    tmp[3] -= mask & kPrime[3];
    /* tmp[3] < 2**64 - 2**32 + 1 */

    tmp[1] += ((u64)(tmp[0] >> 64));
    tmp[0] = (u64)tmp[0];
    tmp[2] += ((u64)(tmp[1] >> 64));
    tmp[1] = (u64)tmp[1];
    tmp[3] += ((u64)(tmp[2] >> 64));
    tmp[2] = (u64)tmp[2];
    /* tmp[i] < 2^64 */

    out[0] = tmp[0];
    out[1] = tmp[1];
    out[2] = tmp[2];
    out[3] = tmp[3];
}

/* smallfelem_expand converts a smallfelem to an felem */
static void smallfelem_expand(felem out, const smallfelem in)
{
    out[0] = in[0];
    out[1] = in[1];
    out[2] = in[2];
    out[3] = in[3];
}

/*-
 * smallfelem_square sets |out| = |small|^2
 * On entry:
 *   small[i] < 2^64
 * On exit:
 *   out[i] < 7 * 2^64 < 2^67
 */
static void smallfelem_square(longfelem out, const smallfelem small)
{
    limb a;
    u64 high, low;

    a = ((uint128_t) small[0]) * small[0];
    low = a;
    high = a >> 64;
    out[0] = low;
    out[1] = high;

    a = ((uint128_t) small[0]) * small[1];
    low = a;
    high = a >> 64;
    out[1] += low;
    out[1] += low;
    out[2] = high;

    a = ((uint128_t) small[0]) * small[2];
    low = a;
    high = a >> 64;
    out[2] += low;
    out[2] *= 2;
    out[3] = high;

    a = ((uint128_t) small[0]) * small[3];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[4] = high;

    a = ((uint128_t) small[1]) * small[2];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[3] *= 2;
    out[4] += high;

    a = ((uint128_t) small[1]) * small[1];
    low = a;
    high = a >> 64;
    out[2] += low;
    out[3] += high;

    a = ((uint128_t) small[1]) * small[3];
    low = a;
    high = a >> 64;
    out[4] += low;
    out[4] *= 2;
    out[5] = high;

    a = ((uint128_t) small[2]) * small[3];
    low = a;
    high = a >> 64;
    out[5] += low;
    out[5] *= 2;
    out[6] = high;
    out[6] += high;

    a = ((uint128_t) small[2]) * small[2];
    low = a;
    high = a >> 64;
    out[4] += low;
    out[5] += high;

    a = ((uint128_t) small[3]) * small[3];
    low = a;
    high = a >> 64;
    out[6] += low;
    out[7] = high;
}

/*-
 * felem_square sets |out| = |in|^2
 * On entry:
 *   in[i] < 2^109
 * On exit:
 *   out[i] < 7 * 2^64 < 2^67
 */
static void felem_square(longfelem out, const felem in)
{
    u64 small[4];
    felem_shrink(small, in);
    smallfelem_square(out, small);
}

/*-
 * smallfelem_mul sets |out| = |small1| * |small2|
 * On entry:
 *   small1[i] < 2^64
 *   small2[i] < 2^64
 * On exit:
 *   out[i] < 7 * 2^64 < 2^67
 */
static void smallfelem_mul(longfelem out, const smallfelem small1,
                           const smallfelem small2)
{
    limb a;
    u64 high, low;

    a = ((uint128_t) small1[0]) * small2[0];
    low = a;
    high = a >> 64;
    out[0] = low;
    out[1] = high;

    a = ((uint128_t) small1[0]) * small2[1];
    low = a;
    high = a >> 64;
    out[1] += low;
    out[2] = high;

    a = ((uint128_t) small1[1]) * small2[0];
    low = a;
    high = a >> 64;
    out[1] += low;
    out[2] += high;

    a = ((uint128_t) small1[0]) * small2[2];
    low = a;
    high = a >> 64;
    out[2] += low;
    out[3] = high;

    a = ((uint128_t) small1[1]) * small2[1];
    low = a;
    high = a >> 64;
    out[2] += low;
    out[3] += high;

    a = ((uint128_t) small1[2]) * small2[0];
    low = a;
    high = a >> 64;
    out[2] += low;
    out[3] += high;

    a = ((uint128_t) small1[0]) * small2[3];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[4] = high;

    a = ((uint128_t) small1[1]) * small2[2];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[4] += high;

    a = ((uint128_t) small1[2]) * small2[1];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[4] += high;

    a = ((uint128_t) small1[3]) * small2[0];
    low = a;
    high = a >> 64;
    out[3] += low;
    out[4] += high;

    a = ((uint128_t) small1[1]) * small2[3];
    low = a;
    high = a >> 64;
    out[4] += low;
    out[5] = high;

    a = ((uint128_t) small1[2]) * small2[2];
    low = a;
    high = a >> 64;
    out[4] += low;
    out[5] += high;

    a = ((uint128_t) small1[3]) * small2[1];
    low = a;
    high = a >> 64;
    out[4] += low;
    out[5] += high;

    a = ((uint128_t) small1[2]) * small2[3];
    low = a;
    high = a >> 64;
    out[5] += low;
    out[6] = high;

    a = ((uint128_t) small1[3]) * small2[2];
    low = a;
    high = a >> 64;
    out[5] += low;
    out[6] += high;

    a = ((uint128_t) small1[3]) * small2[3];
    low = a;
    high = a >> 64;
    out[6] += low;
    out[7] = high;
}

/*-
 * felem_mul sets |out| = |in1| * |in2|
 * On entry:
 *   in1[i] < 2^109
 *   in2[i] < 2^109
 * On exit:
 *   out[i] < 7 * 2^64 < 2^67
 */
static void felem_mul(longfelem out, const felem in1, const felem in2)
{
    smallfelem small1, small2;
    felem_shrink(small1, in1);
    felem_shrink(small2, in2);
    smallfelem_mul(out, small1, small2);
}

/*-
 * felem_small_mul sets |out| = |small1| * |in2|
 * On entry:
 *   small1[i] < 2^64
 *   in2[i] < 2^109
 * On exit:
 *   out[i] < 7 * 2^64 < 2^67
 */
static void felem_small_mul(longfelem out, const smallfelem small1,
                            const felem in2)
{
    smallfelem small2;
    felem_shrink(small2, in2);
    smallfelem_mul(out, small1, small2);
}

# define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
# define two100 (((limb)1) << 100)
# define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
/* zero100 is 0 mod p */
static const felem zero100 =
    { two100m36m4, two100, two100m36p4, two100m36p4 };

/*-
 * Internal function for the different flavours of felem_reduce.
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
 * On entry:
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
 *   out[1] >= in[7] + 2^32*in[4]
 *   out[2] >= in[5] + 2^32*in[5]
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
 * On exit:
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
 */
static void felem_reduce_(felem out, const longfelem in)
{
    int128_t c;
    /* combine common terms from below */
    c = in[4] + (in[5] << 32);
    out[0] += c;
    out[3] -= c;

    c = in[5] - in[7];
    out[1] += c;
    out[2] -= c;

    /* the remaining terms */
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
    out[1] -= (in[4] << 32);
    out[3] += (in[4] << 32);

    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
    out[2] -= (in[5] << 32);

    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
    out[0] -= in[6];
    out[0] -= (in[6] << 32);
    out[1] += (in[6] << 33);
    out[2] += (in[6] * 2);
    out[3] -= (in[6] << 32);

    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
    out[0] -= in[7];
    out[0] -= (in[7] << 32);
    out[2] += (in[7] << 33);
    out[3] += (in[7] * 3);
}

/*-
 * felem_reduce converts a longfelem into an felem.
 * To be called directly after felem_square or felem_mul.
 * On entry:
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
 * On exit:
 *   out[i] < 2^101
 */
static void felem_reduce(felem out, const longfelem in)
{
    out[0] = zero100[0] + in[0];
    out[1] = zero100[1] + in[1];
    out[2] = zero100[2] + in[2];
    out[3] = zero100[3] + in[3];

    felem_reduce_(out, in);

    /*-
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
     *
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
     */
}

/*-
 * felem_reduce_zero105 converts a larger longfelem into an felem.
 * On entry:
 *   in[0] < 2^71
 * On exit:
 *   out[i] < 2^106
 */
static void felem_reduce_zero105(felem out, const longfelem in)
{
    out[0] = zero105[0] + in[0];
    out[1] = zero105[1] + in[1];
    out[2] = zero105[2] + in[2];
    out[3] = zero105[3] + in[3];

    felem_reduce_(out, in);

    /*-
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
     * out[1] > 2^105 - 2^71 - 2^103 > 0
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
     *
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
     */
}

/*
 * subtract_u64 sets *result = *result - v and *carry to one if the
 * subtraction underflowed.
 */
static void subtract_u64(u64 *result, u64 *carry, u64 v)
{
    uint128_t r = *result;
    r -= v;
    *carry = (r >> 64) & 1;
    *result = (u64)r;
}

/*
 * felem_contract converts |in| to its unique, minimal representation. On
 * entry: in[i] < 2^109
 */
static void felem_contract(smallfelem out, const felem in)
{
    unsigned i;
    u64 all_equal_so_far = 0, result = 0, carry;

    felem_shrink(out, in);
    /* small is minimal except that the value might be > p */

    all_equal_so_far--;
    /*
     * We are doing a constant time test if out >= kPrime. We need to compare
     * each u64, from most-significant to least significant. For each one, if
     * all words so far have been equal (m is all ones) then a non-equal
     * result is the answer. Otherwise we continue.
     */
    for (i = 3; i < 4; i--) {
        u64 equal;
        uint128_t a = ((uint128_t) kPrime[i]) - out[i];
        /*
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
         * will all be set.
         */
        result |= all_equal_so_far & ((u64)(a >> 64));

        /*
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
         * decrement will make it all ones.
         */
        equal = kPrime[i] ^ out[i];
        equal--;
        equal &= equal << 32;
        equal &= equal << 16;
        equal &= equal << 8;
        equal &= equal << 4;
        equal &= equal << 2;
        equal &= equal << 1;
        equal = 0 - (equal >> 63);

        all_equal_so_far &= equal;
    }

    /*
     * if all_equal_so_far is still all ones then the two values are equal
     * and so out >= kPrime is true.
     */
    result |= all_equal_so_far;

    /* if out >= kPrime then we subtract kPrime. */
    subtract_u64(&out[0], &carry, result & kPrime[0]);
    subtract_u64(&out[1], &carry, carry);
    subtract_u64(&out[2], &carry, carry);
    subtract_u64(&out[3], &carry, carry);

    subtract_u64(&out[1], &carry, result & kPrime[1]);
    subtract_u64(&out[2], &carry, carry);
    subtract_u64(&out[3], &carry, carry);

    subtract_u64(&out[2], &carry, result & kPrime[2]);
    subtract_u64(&out[3], &carry, carry);

    subtract_u64(&out[3], &carry, result & kPrime[3]);
}

static void smallfelem_square_contract(smallfelem out, const smallfelem in)
{
    longfelem longtmp;
    felem tmp;

    smallfelem_square(longtmp, in);
    felem_reduce(tmp, longtmp);
    felem_contract(out, tmp);
}

static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
                                    const smallfelem in2)
{
    longfelem longtmp;
    felem tmp;

    smallfelem_mul(longtmp, in1, in2);
    felem_reduce(tmp, longtmp);
    felem_contract(out, tmp);
}

/*-
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
 * otherwise.
 * On entry:
 *   small[i] < 2^64
 */
static limb smallfelem_is_zero(const smallfelem small)
{
    limb result;
    u64 is_p;

    u64 is_zero = small[0] | small[1] | small[2] | small[3];
    is_zero--;
    is_zero &= is_zero << 32;
    is_zero &= is_zero << 16;
    is_zero &= is_zero << 8;
    is_zero &= is_zero << 4;
    is_zero &= is_zero << 2;
    is_zero &= is_zero << 1;
    is_zero = 0 - (is_zero >> 63);

    is_p = (small[0] ^ kPrime[0]) |
        (small[1] ^ kPrime[1]) |
        (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
    is_p--;
    is_p &= is_p << 32;
    is_p &= is_p << 16;
    is_p &= is_p << 8;
    is_p &= is_p << 4;
    is_p &= is_p << 2;
    is_p &= is_p << 1;
    is_p = 0 - (is_p >> 63);

    is_zero |= is_p;

    result = is_zero;
    result |= ((limb) is_zero) << 64;
    return result;
}

static int smallfelem_is_zero_int(const void *small)
{
    return (int)(smallfelem_is_zero(small) & ((limb) 1));
}

/*-
 * felem_inv calculates |out| = |in|^{-1}
 *
 * Based on Fermat's Little Theorem:
 *   a^p = a (mod p)
 *   a^{p-1} = 1 (mod p)
 *   a^{p-2} = a^{-1} (mod p)
 */
static void felem_inv(felem out, const felem in)
{
    felem ftmp, ftmp2;
    /* each e_I will hold |in|^{2^I - 1} */
    felem e2, e4, e8, e16, e32, e64;
    longfelem tmp;
    unsigned i;

    felem_square(tmp, in);
    felem_reduce(ftmp, tmp);    /* 2^1 */
    felem_mul(tmp, in, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
    felem_assign(e2, ftmp);
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^2 */
    felem_mul(tmp, ftmp, e2);
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^0 */
    felem_assign(e4, ftmp);
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^5 - 2^1 */
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^6 - 2^2 */
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^7 - 2^3 */
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^4 */
    felem_mul(tmp, ftmp, e4);
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^0 */
    felem_assign(e8, ftmp);
    for (i = 0; i < 8; i++) {
        felem_square(tmp, ftmp);
        felem_reduce(ftmp, tmp);
    }                           /* 2^16 - 2^8 */
    felem_mul(tmp, ftmp, e8);
    felem_reduce(ftmp, tmp);    /* 2^16 - 2^0 */
    felem_assign(e16, ftmp);
    for (i = 0; i < 16; i++) {
        felem_square(tmp, ftmp);
        felem_reduce(ftmp, tmp);
    }                           /* 2^32 - 2^16 */
    felem_mul(tmp, ftmp, e16);
    felem_reduce(ftmp, tmp);    /* 2^32 - 2^0 */
    felem_assign(e32, ftmp);
    for (i = 0; i < 32; i++) {
        felem_square(tmp, ftmp);
        felem_reduce(ftmp, tmp);
    }                           /* 2^64 - 2^32 */
    felem_assign(e64, ftmp);
    felem_mul(tmp, ftmp, in);
    felem_reduce(ftmp, tmp);    /* 2^64 - 2^32 + 2^0 */
    for (i = 0; i < 192; i++) {
        felem_square(tmp, ftmp);
        felem_reduce(ftmp, tmp);
    }                           /* 2^256 - 2^224 + 2^192 */

    felem_mul(tmp, e64, e32);
    felem_reduce(ftmp2, tmp);   /* 2^64 - 2^0 */
    for (i = 0; i < 16; i++) {
        felem_square(tmp, ftmp2);
        felem_reduce(ftmp2, tmp);
    }                           /* 2^80 - 2^16 */
    felem_mul(tmp, ftmp2, e16);
    felem_reduce(ftmp2, tmp);   /* 2^80 - 2^0 */
    for (i = 0; i < 8; i++) {
        felem_square(tmp, ftmp2);
        felem_reduce(ftmp2, tmp);
    }                           /* 2^88 - 2^8 */
    felem_mul(tmp, ftmp2, e8);
    felem_reduce(ftmp2, tmp);   /* 2^88 - 2^0 */
    for (i = 0; i < 4; i++) {
        felem_square(tmp, ftmp2);
        felem_reduce(ftmp2, tmp);
    }                           /* 2^92 - 2^4 */
    felem_mul(tmp, ftmp2, e4);
    felem_reduce(ftmp2, tmp);   /* 2^92 - 2^0 */
    felem_square(tmp, ftmp2);
    felem_reduce(ftmp2, tmp);   /* 2^93 - 2^1 */
    felem_square(tmp, ftmp2);
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^2 */
    felem_mul(tmp, ftmp2, e2);
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^0 */
    felem_square(tmp, ftmp2);
    felem_reduce(ftmp2, tmp);   /* 2^95 - 2^1 */
    felem_square(tmp, ftmp2);
    felem_reduce(ftmp2, tmp);   /* 2^96 - 2^2 */
    felem_mul(tmp, ftmp2, in);
    felem_reduce(ftmp2, tmp);   /* 2^96 - 3 */

    felem_mul(tmp, ftmp2, ftmp);
    felem_reduce(out, tmp);     /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
}

static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
{
    felem tmp;

    smallfelem_expand(tmp, in);
    felem_inv(tmp, tmp);
    felem_contract(out, tmp);
}

/*-
 * Group operations
 * ----------------
 *
 * Building on top of the field operations we have the operations on the
 * elliptic curve group itself. Points on the curve are represented in Jacobian
 * coordinates
 */

/*-
 * point_double calculates 2*(x_in, y_in, z_in)
 *
 * The method is taken from:
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
 *
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
 * while x_out == y_in is not (maybe this works, but it's not tested).
 */
static void
point_double(felem x_out, felem y_out, felem z_out,
             const felem x_in, const felem y_in, const felem z_in)
{
    longfelem tmp, tmp2;
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
    smallfelem small1, small2;

    felem_assign(ftmp, x_in);
    /* ftmp[i] < 2^106 */
    felem_assign(ftmp2, x_in);
    /* ftmp2[i] < 2^106 */

    /* delta = z^2 */
    felem_square(tmp, z_in);
    felem_reduce(delta, tmp);
    /* delta[i] < 2^101 */

    /* gamma = y^2 */
    felem_square(tmp, y_in);
    felem_reduce(gamma, tmp);
    /* gamma[i] < 2^101 */
    felem_shrink(small1, gamma);

    /* beta = x*gamma */
    felem_small_mul(tmp, small1, x_in);
    felem_reduce(beta, tmp);
    /* beta[i] < 2^101 */

    /* alpha = 3*(x-delta)*(x+delta) */
    felem_diff(ftmp, delta);
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
    felem_sum(ftmp2, delta);
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
    felem_scalar(ftmp2, 3);
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
    felem_mul(tmp, ftmp, ftmp2);
    felem_reduce(alpha, tmp);
    /* alpha[i] < 2^101 */
    felem_shrink(small2, alpha);

    /* x' = alpha^2 - 8*beta */
    smallfelem_square(tmp, small2);
    felem_reduce(x_out, tmp);
    felem_assign(ftmp, beta);
    felem_scalar(ftmp, 8);
    /* ftmp[i] < 8 * 2^101 = 2^104 */
    felem_diff(x_out, ftmp);
    /* x_out[i] < 2^105 + 2^101 < 2^106 */

    /* z' = (y + z)^2 - gamma - delta */
    felem_sum(delta, gamma);
    /* delta[i] < 2^101 + 2^101 = 2^102 */
    felem_assign(ftmp, y_in);
    felem_sum(ftmp, z_in);
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
    felem_square(tmp, ftmp);
    felem_reduce(z_out, tmp);
    felem_diff(z_out, delta);
    /* z_out[i] < 2^105 + 2^101 < 2^106 */

    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
    felem_scalar(beta, 4);
    /* beta[i] < 4 * 2^101 = 2^103 */
    felem_diff_zero107(beta, x_out);
    /* beta[i] < 2^107 + 2^103 < 2^108 */
    felem_small_mul(tmp, small2, beta);
    /* tmp[i] < 7 * 2^64 < 2^67 */
    smallfelem_square(tmp2, small1);
    /* tmp2[i] < 7 * 2^64 */
    longfelem_scalar(tmp2, 8);
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
    longfelem_diff(tmp, tmp2);
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
    felem_reduce_zero105(y_out, tmp);
    /* y_out[i] < 2^106 */
}

/*
 * point_double_small is the same as point_double, except that it operates on
 * smallfelems
 */
static void
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
                   const smallfelem x_in, const smallfelem y_in,
                   const smallfelem z_in)
{
    felem felem_x_out, felem_y_out, felem_z_out;
    felem felem_x_in, felem_y_in, felem_z_in;

    smallfelem_expand(felem_x_in, x_in);
    smallfelem_expand(felem_y_in, y_in);
    smallfelem_expand(felem_z_in, z_in);
    point_double(felem_x_out, felem_y_out, felem_z_out,
                 felem_x_in, felem_y_in, felem_z_in);
    felem_shrink(x_out, felem_x_out);
    felem_shrink(y_out, felem_y_out);
    felem_shrink(z_out, felem_z_out);
}

/* copy_conditional copies in to out iff mask is all ones. */
static void copy_conditional(felem out, const felem in, limb mask)
{
    unsigned i;
    for (i = 0; i < NLIMBS; ++i) {
        const limb tmp = mask & (in[i] ^ out[i]);
        out[i] ^= tmp;
    }
}

/* copy_small_conditional copies in to out iff mask is all ones. */
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
{
    unsigned i;
    const u64 mask64 = mask;
    for (i = 0; i < NLIMBS; ++i) {
        out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
    }
}

/*-
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
 *
 * The method is taken from:
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
 *
 * This function includes a branch for checking whether the two input points
 * are equal, (while not equal to the point at infinity). This case never
 * happens during single point multiplication, so there is no timing leak for
 * ECDH or ECDSA signing.
 */
static void point_add(felem x3, felem y3, felem z3,
                      const felem x1, const felem y1, const felem z1,
                      const int mixed, const smallfelem x2,
                      const smallfelem y2, const smallfelem z2)
{
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
    longfelem tmp, tmp2;
    smallfelem small1, small2, small3, small4, small5;
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
    limb points_equal;

    felem_shrink(small3, z1);

    z1_is_zero = smallfelem_is_zero(small3);
    z2_is_zero = smallfelem_is_zero(z2);

    /* ftmp = z1z1 = z1**2 */
    smallfelem_square(tmp, small3);
    felem_reduce(ftmp, tmp);
    /* ftmp[i] < 2^101 */
    felem_shrink(small1, ftmp);

    if (!mixed) {
        /* ftmp2 = z2z2 = z2**2 */
        smallfelem_square(tmp, z2);
        felem_reduce(ftmp2, tmp);
        /* ftmp2[i] < 2^101 */
        felem_shrink(small2, ftmp2);

        felem_shrink(small5, x1);

        /* u1 = ftmp3 = x1*z2z2 */
        smallfelem_mul(tmp, small5, small2);
        felem_reduce(ftmp3, tmp);
        /* ftmp3[i] < 2^101 */

        /* ftmp5 = z1 + z2 */
        felem_assign(ftmp5, z1);
        felem_small_sum(ftmp5, z2);
        /* ftmp5[i] < 2^107 */

        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
        felem_square(tmp, ftmp5);
        felem_reduce(ftmp5, tmp);
        /* ftmp2 = z2z2 + z1z1 */
        felem_sum(ftmp2, ftmp);
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
        felem_diff(ftmp5, ftmp2);
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */

        /* ftmp2 = z2 * z2z2 */
        smallfelem_mul(tmp, small2, z2);
        felem_reduce(ftmp2, tmp);

        /* s1 = ftmp2 = y1 * z2**3 */
        felem_mul(tmp, y1, ftmp2);
        felem_reduce(ftmp6, tmp);
        /* ftmp6[i] < 2^101 */
    } else {
        /*
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
         */

        /* u1 = ftmp3 = x1*z2z2 */
        felem_assign(ftmp3, x1);
        /* ftmp3[i] < 2^106 */

        /* ftmp5 = 2z1z2 */
        felem_assign(ftmp5, z1);
        felem_scalar(ftmp5, 2);
        /* ftmp5[i] < 2*2^106 = 2^107 */

        /* s1 = ftmp2 = y1 * z2**3 */
        felem_assign(ftmp6, y1);
        /* ftmp6[i] < 2^106 */
    }

    /* u2 = x2*z1z1 */
    smallfelem_mul(tmp, x2, small1);
    felem_reduce(ftmp4, tmp);

    /* h = ftmp4 = u2 - u1 */
    felem_diff_zero107(ftmp4, ftmp3);
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
    felem_shrink(small4, ftmp4);

    x_equal = smallfelem_is_zero(small4);

    /* z_out = ftmp5 * h */
    felem_small_mul(tmp, small4, ftmp5);
    felem_reduce(z_out, tmp);
    /* z_out[i] < 2^101 */

    /* ftmp = z1 * z1z1 */
    smallfelem_mul(tmp, small1, small3);
    felem_reduce(ftmp, tmp);

    /* s2 = tmp = y2 * z1**3 */
    felem_small_mul(tmp, y2, ftmp);
    felem_reduce(ftmp5, tmp);

    /* r = ftmp5 = (s2 - s1)*2 */
    felem_diff_zero107(ftmp5, ftmp6);
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
    felem_scalar(ftmp5, 2);
    /* ftmp5[i] < 2^109 */
    felem_shrink(small1, ftmp5);
    y_equal = smallfelem_is_zero(small1);

    /*
     * The formulae are incorrect if the points are equal, in affine coordinates
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
     * happens.
     *
     * We use bitwise operations to avoid potential side-channels introduced by
     * the short-circuiting behaviour of boolean operators.
     *
     * The special case of either point being the point at infinity (z1 and/or
     * z2 are zero), is handled separately later on in this function, so we
     * avoid jumping to point_double here in those special cases.
     */
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));

    if (points_equal) {
        /*
         * This is obviously not constant-time but, as mentioned before, this
         * case never happens during single point multiplication, so there is no
         * timing leak for ECDH or ECDSA signing.
         */
        point_double(x3, y3, z3, x1, y1, z1);
        return;
    }

    /* I = ftmp = (2h)**2 */
    felem_assign(ftmp, ftmp4);
    felem_scalar(ftmp, 2);
    /* ftmp[i] < 2*2^108 = 2^109 */
    felem_square(tmp, ftmp);
    felem_reduce(ftmp, tmp);

    /* J = ftmp2 = h * I */
    felem_mul(tmp, ftmp4, ftmp);
    felem_reduce(ftmp2, tmp);

    /* V = ftmp4 = U1 * I */
    felem_mul(tmp, ftmp3, ftmp);
    felem_reduce(ftmp4, tmp);

    /* x_out = r**2 - J - 2V */
    smallfelem_square(tmp, small1);
    felem_reduce(x_out, tmp);
    felem_assign(ftmp3, ftmp4);
    felem_scalar(ftmp4, 2);
    felem_sum(ftmp4, ftmp2);
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
    felem_diff(x_out, ftmp4);
    /* x_out[i] < 2^105 + 2^101 */

    /* y_out = r(V-x_out) - 2 * s1 * J */
    felem_diff_zero107(ftmp3, x_out);
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
    felem_small_mul(tmp, small1, ftmp3);
    felem_mul(tmp2, ftmp6, ftmp2);
    longfelem_scalar(tmp2, 2);
    /* tmp2[i] < 2*2^67 = 2^68 */
    longfelem_diff(tmp, tmp2);
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
    felem_reduce_zero105(y_out, tmp);
    /* y_out[i] < 2^106 */

    copy_small_conditional(x_out, x2, z1_is_zero);
    copy_conditional(x_out, x1, z2_is_zero);
    copy_small_conditional(y_out, y2, z1_is_zero);
    copy_conditional(y_out, y1, z2_is_zero);
    copy_small_conditional(z_out, z2, z1_is_zero);
    copy_conditional(z_out, z1, z2_is_zero);
    felem_assign(x3, x_out);
    felem_assign(y3, y_out);
    felem_assign(z3, z_out);
}

/*
 * point_add_small is the same as point_add, except that it operates on
 * smallfelems
 */
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
                            smallfelem x1, smallfelem y1, smallfelem z1,
                            smallfelem x2, smallfelem y2, smallfelem z2)
{
    felem felem_x3, felem_y3, felem_z3;
    felem felem_x1, felem_y1, felem_z1;
    smallfelem_expand(felem_x1, x1);
    smallfelem_expand(felem_y1, y1);
    smallfelem_expand(felem_z1, z1);
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
              x2, y2, z2);
    felem_shrink(x3, felem_x3);
    felem_shrink(y3, felem_y3);
    felem_shrink(z3, felem_z3);
}

/*-
 * Base point pre computation
 * --------------------------
 *
 * Two different sorts of precomputed tables are used in the following code.
 * Each contain various points on the curve, where each point is three field
 * elements (x, y, z).
 *
 * For the base point table, z is usually 1 (0 for the point at infinity).
 * This table has 2 * 16 elements, starting with the following:
 * index | bits    | point
 * ------+---------+------------------------------
 *     0 | 0 0 0 0 | 0G
 *     1 | 0 0 0 1 | 1G
 *     2 | 0 0 1 0 | 2^64G
 *     3 | 0 0 1 1 | (2^64 + 1)G
 *     4 | 0 1 0 0 | 2^128G
 *     5 | 0 1 0 1 | (2^128 + 1)G
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
 *     8 | 1 0 0 0 | 2^192G
 *     9 | 1 0 0 1 | (2^192 + 1)G
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
 * followed by a copy of this with each element multiplied by 2^32.
 *
 * The reason for this is so that we can clock bits into four different
 * locations when doing simple scalar multiplies against the base point,
 * and then another four locations using the second 16 elements.
 *
 * Tables for other points have table[i] = iG for i in 0 .. 16. */

/* gmul is the table of precomputed base points */
static const smallfelem gmul[2][16][3] = {
    {{{0, 0, 0, 0},
      {0, 0, 0, 0},
      {0, 0, 0, 0}},
     {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
       0x6b17d1f2e12c4247},
      {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
       0x4fe342e2fe1a7f9b},
      {1, 0, 0, 0}},
     {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
       0x0fa822bc2811aaa5},
      {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
       0xbff44ae8f5dba80d},
      {1, 0, 0, 0}},
     {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
       0x300a4bbc89d6726f},
      {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
       0x72aac7e0d09b4644},
      {1, 0, 0, 0}},
     {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
       0x447d739beedb5e67},
      {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
       0x2d4825ab834131ee},
      {1, 0, 0, 0}},
     {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
       0xef9519328a9c72ff},
      {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
       0x611e9fc37dbb2c9b},
      {1, 0, 0, 0}},
     {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
       0x550663797b51f5d8},
      {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
       0x157164848aecb851},
      {1, 0, 0, 0}},
     {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
       0xeb5d7745b21141ea},
      {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
       0xeafd72ebdbecc17b},
      {1, 0, 0, 0}},
     {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
       0xa6d39677a7849276},
      {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
       0x674f84749b0b8816},
      {1, 0, 0, 0}},
     {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
       0x4e769e7672c9ddad},
      {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
       0x42b99082de830663},
      {1, 0, 0, 0}},
     {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
       0x78878ef61c6ce04d},
      {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
       0xb6cb3f5d7b72c321},
      {1, 0, 0, 0}},
     {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
       0x0c88bc4d716b1287},
      {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
       0xdd5ddea3f3901dc6},
      {1, 0, 0, 0}},
     {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
       0x68f344af6b317466},
      {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
       0x31b9c405f8540a20},
      {1, 0, 0, 0}},
     {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
       0x4052bf4b6f461db9},
      {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
       0xfecf4d5190b0fc61},
      {1, 0, 0, 0}},
     {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
       0x1eddbae2c802e41a},
      {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
       0x43104d86560ebcfc},
      {1, 0, 0, 0}},
     {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
       0xb48e26b484f7a21c},
      {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
       0xfac015404d4d3dab},
      {1, 0, 0, 0}}},
    {{{0, 0, 0, 0},
      {0, 0, 0, 0},
      {0, 0, 0, 0}},
     {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
       0x7fe36b40af22af89},
      {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
       0xe697d45825b63624},
      {1, 0, 0, 0}},
     {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
       0x4a5b506612a677a6},
      {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
       0xeb13461ceac089f1},
      {1, 0, 0, 0}},
     {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
       0x0781b8291c6a220a},
      {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
       0x690cde8df0151593},
      {1, 0, 0, 0}},
     {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
       0x8a535f566ec73617},
      {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
       0x0455c08468b08bd7},
      {1, 0, 0, 0}},
     {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
       0x06bada7ab77f8276},
      {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
       0x5b476dfd0e6cb18a},
      {1, 0, 0, 0}},
     {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
       0x3e29864e8a2ec908},
      {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
       0x239b90ea3dc31e7e},
      {1, 0, 0, 0}},
     {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
       0x820f4dd949f72ff7},
      {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
       0x140406ec783a05ec},
      {1, 0, 0, 0}},
     {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
       0x68f6b8542783dfee},
      {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
       0xcbe1feba92e40ce6},
      {1, 0, 0, 0}},
     {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
       0xd0b2f94d2f420109},
      {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
       0x971459828b0719e5},
      {1, 0, 0, 0}},
     {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
       0x961610004a866aba},
      {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
       0x7acb9fadcee75e44},
      {1, 0, 0, 0}},
     {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
       0x24eb9acca333bf5b},
      {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
       0x69f891c5acd079cc},
      {1, 0, 0, 0}},
     {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
       0xe51f547c5972a107},
      {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
       0x1c309a2b25bb1387},
      {1, 0, 0, 0}},
     {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
       0x20b87b8aa2c4e503},
      {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
       0xf5c6fa49919776be},
      {1, 0, 0, 0}},
     {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
       0x1ed7d1b9332010b9},
      {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
       0x3a2b03f03217257a},
      {1, 0, 0, 0}},
     {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
       0x15fee545c78dd9f6},
      {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
       0x4ab5b6b2b8753f81},
      {1, 0, 0, 0}}}
};

/*
 * select_point selects the |idx|th point from a precomputation table and
 * copies it to out.
 */
static void select_point(const u64 idx, unsigned int size,
                         const smallfelem pre_comp[16][3], smallfelem out[3])
{
    unsigned i, j;
    u64 *outlimbs = &out[0][0];

    memset(out, 0, sizeof(*out) * 3);

    for (i = 0; i < size; i++) {
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
        u64 mask = i ^ idx;
        mask |= mask >> 4;
        mask |= mask >> 2;
        mask |= mask >> 1;
        mask &= 1;
        mask--;
        for (j = 0; j < NLIMBS * 3; j++)
            outlimbs[j] |= inlimbs[j] & mask;
    }
}

/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, int i)
{
    if ((i < 0) || (i >= 256))
        return 0;
    return (in[i >> 3] >> (i & 7)) & 1;
}

/*
 * Interleaved point multiplication using precomputed point multiples: The
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
 * generator, using certain (large) precomputed multiples in g_pre_comp.
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
 */
static void batch_mul(felem x_out, felem y_out, felem z_out,
                      const felem_bytearray scalars[],
                      const unsigned num_points, const u8 *g_scalar,
                      const int mixed, const smallfelem pre_comp[][17][3],
                      const smallfelem g_pre_comp[2][16][3])
{
    int i, skip;
    unsigned num, gen_mul = (g_scalar != NULL);
    felem nq[3], ftmp;
    smallfelem tmp[3];
    u64 bits;
    u8 sign, digit;

    /* set nq to the point at infinity */
    memset(nq, 0, sizeof(nq));

    /*
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
     * of the generator (two in each of the last 32 rounds) and additions of
     * other points multiples (every 5th round).
     */
    skip = 1;                   /* save two point operations in the first
                                 * round */
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
        /* double */
        if (!skip)
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);

        /* add multiples of the generator */
        if (gen_mul && (i <= 31)) {
            /* first, look 32 bits upwards */
            bits = get_bit(g_scalar, i + 224) << 3;
            bits |= get_bit(g_scalar, i + 160) << 2;
            bits |= get_bit(g_scalar, i + 96) << 1;
            bits |= get_bit(g_scalar, i + 32);
            /* select the point to add, in constant time */
            select_point(bits, 16, g_pre_comp[1], tmp);

            if (!skip) {
                /* Arg 1 below is for "mixed" */
                point_add(nq[0], nq[1], nq[2],
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
            } else {
                smallfelem_expand(nq[0], tmp[0]);
                smallfelem_expand(nq[1], tmp[1]);
                smallfelem_expand(nq[2], tmp[2]);
                skip = 0;
            }

            /* second, look at the current position */
            bits = get_bit(g_scalar, i + 192) << 3;
            bits |= get_bit(g_scalar, i + 128) << 2;
            bits |= get_bit(g_scalar, i + 64) << 1;
            bits |= get_bit(g_scalar, i);
            /* select the point to add, in constant time */
            select_point(bits, 16, g_pre_comp[0], tmp);
            /* Arg 1 below is for "mixed" */
            point_add(nq[0], nq[1], nq[2],
                      nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
        }

        /* do other additions every 5 doublings */
        if (num_points && (i % 5 == 0)) {
            /* loop over all scalars */
            for (num = 0; num < num_points; ++num) {
                bits = get_bit(scalars[num], i + 4) << 5;
                bits |= get_bit(scalars[num], i + 3) << 4;
                bits |= get_bit(scalars[num], i + 2) << 3;
                bits |= get_bit(scalars[num], i + 1) << 2;
                bits |= get_bit(scalars[num], i) << 1;
                bits |= get_bit(scalars[num], i - 1);
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

                /*
                 * select the point to add or subtract, in constant time
                 */
                select_point(digit, 17, pre_comp[num], tmp);
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
                                               * point */
                copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
                felem_contract(tmp[1], ftmp);

                if (!skip) {
                    point_add(nq[0], nq[1], nq[2],
                              nq[0], nq[1], nq[2],
                              mixed, tmp[0], tmp[1], tmp[2]);
                } else {
                    smallfelem_expand(nq[0], tmp[0]);
                    smallfelem_expand(nq[1], tmp[1]);
                    smallfelem_expand(nq[2], tmp[2]);
                    skip = 0;
                }
            }
        }
    }
    felem_assign(x_out, nq[0]);
    felem_assign(y_out, nq[1]);
    felem_assign(z_out, nq[2]);
}

/* Precomputation for the group generator. */
struct nistp256_pre_comp_st {
    smallfelem g_pre_comp[2][16][3];
    CRYPTO_REF_COUNT references;
    CRYPTO_RWLOCK *lock;
};

const EC_METHOD *EC_GFp_nistp256_method(void)
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_prime_field,
        ec_GFp_nistp256_group_init,
        ec_GFp_simple_group_finish,
        ec_GFp_simple_group_clear_finish,
        ec_GFp_nist_group_copy,
        ec_GFp_nistp256_group_set_curve,
        ec_GFp_simple_group_get_curve,
        ec_GFp_simple_group_get_degree,
        ec_group_simple_order_bits,
        ec_GFp_simple_group_check_discriminant,
        ec_GFp_simple_point_init,
        ec_GFp_simple_point_finish,
        ec_GFp_simple_point_clear_finish,
        ec_GFp_simple_point_copy,
        ec_GFp_simple_point_set_to_infinity,
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
        ec_GFp_simple_point_set_affine_coordinates,
        ec_GFp_nistp256_point_get_affine_coordinates,
        0 /* point_set_compressed_coordinates */ ,
        0 /* point2oct */ ,
        0 /* oct2point */ ,
        ec_GFp_simple_add,
        ec_GFp_simple_dbl,
        ec_GFp_simple_invert,
        ec_GFp_simple_is_at_infinity,
        ec_GFp_simple_is_on_curve,
        ec_GFp_simple_cmp,
        ec_GFp_simple_make_affine,
        ec_GFp_simple_points_make_affine,
        ec_GFp_nistp256_points_mul,
        ec_GFp_nistp256_precompute_mult,
        ec_GFp_nistp256_have_precompute_mult,
        ec_GFp_nist_field_mul,
        ec_GFp_nist_field_sqr,
        0 /* field_div */ ,
        ec_GFp_simple_field_inv,
        0 /* field_encode */ ,
        0 /* field_decode */ ,
        0,                      /* field_set_to_one */
        ec_key_simple_priv2oct,
        ec_key_simple_oct2priv,
        0, /* set private */
        ec_key_simple_generate_key,
        ec_key_simple_check_key,
        ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ecdh_simple_compute_key,
        0, /* field_inverse_mod_ord */
        0, /* blind_coordinates */
        0, /* ladder_pre */
        0, /* ladder_step */
        0  /* ladder_post */
    };

    return &ret;
}

/******************************************************************************/
/*
 * FUNCTIONS TO MANAGE PRECOMPUTATION
 */

static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
{
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));

    if (ret == NULL) {
        ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        return ret;
    }

    ret->references = 1;

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
    return ret;
}

NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
{
    int i;
    if (p != NULL)
        CRYPTO_UP_REF(&p->references, &i, p->lock);
    return p;
}

void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
{
    int i;

    if (pre == NULL)
        return;

    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
    REF_PRINT_COUNT("EC_nistp256", x);
    if (i > 0)
        return;
    REF_ASSERT_ISNT(i < 0);

    CRYPTO_THREAD_lock_free(pre->lock);
    OPENSSL_free(pre);
}

/******************************************************************************/
/*
 * OPENSSL EC_METHOD FUNCTIONS
 */

int ec_GFp_nistp256_group_init(EC_GROUP *group)
{
    int ret;
    ret = ec_GFp_simple_group_init(group);
    group->a_is_minus3 = 1;
    return ret;
}

int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
                                    const BIGNUM *a, const BIGNUM *b,
                                    BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX *new_ctx = NULL;
    BIGNUM *curve_p, *curve_a, *curve_b;

    if (ctx == NULL)
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
            return 0;
    BN_CTX_start(ctx);
    curve_p = BN_CTX_get(ctx);
    curve_a = BN_CTX_get(ctx);
    curve_b = BN_CTX_get(ctx);
    if (curve_b == NULL)
        goto err;
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
        ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
              EC_R_WRONG_CURVE_PARAMETERS);
        goto err;
    }
    group->field_mod_func = BN_nist_mod_256;
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
 * (X/Z^2, Y/Z^3)
 */
int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
                                                 const EC_POINT *point,
                                                 BIGNUM *x, BIGNUM *y,
                                                 BN_CTX *ctx)
{
    felem z1, z2, x_in, y_in;
    smallfelem x_out, y_out;
    longfelem tmp;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
        (!BN_to_felem(z1, point->Z)))
        return 0;
    felem_inv(z2, z1);
    felem_square(tmp, z2);
    felem_reduce(z1, tmp);
    felem_mul(tmp, x_in, z1);
    felem_reduce(x_in, tmp);
    felem_contract(x_out, x_in);
    if (x != NULL) {
        if (!smallfelem_to_BN(x, x_out)) {
            ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
                  ERR_R_BN_LIB);
            return 0;
        }
    }
    felem_mul(tmp, z1, z2);
    felem_reduce(z1, tmp);
    felem_mul(tmp, y_in, z1);
    felem_reduce(y_in, tmp);
    felem_contract(y_out, y_in);
    if (y != NULL) {
        if (!smallfelem_to_BN(y, y_out)) {
            ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
                  ERR_R_BN_LIB);
            return 0;
        }
    }
    return 1;
}

/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
static void make_points_affine(size_t num, smallfelem points[][3],
                               smallfelem tmp_smallfelems[])
{
    /*
     * Runs in constant time, unless an input is the point at infinity (which
     * normally shouldn't happen).
     */
    ec_GFp_nistp_points_make_affine_internal(num,
                                             points,
                                             sizeof(smallfelem),
                                             tmp_smallfelems,
                                             (void (*)(void *))smallfelem_one,
                                             smallfelem_is_zero_int,
                                             (void (*)(void *, const void *))
                                             smallfelem_assign,
                                             (void (*)(void *, const void *))
                                             smallfelem_square_contract,
                                             (void (*)
                                              (void *, const void *,
                                               const void *))
                                             smallfelem_mul_contract,
                                             (void (*)(void *, const void *))
                                             smallfelem_inv_contract,
                                             /* nothing to contract */
                                             (void (*)(void *, const void *))
                                             smallfelem_assign);
}

/*
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
 * values Result is stored in r (r can equal one of the inputs).
 */
int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
                               const BIGNUM *scalar, size_t num,
                               const EC_POINT *points[],
                               const BIGNUM *scalars[], BN_CTX *ctx)
{
    int ret = 0;
    int j;
    int mixed = 0;
    BIGNUM *x, *y, *z, *tmp_scalar;
    felem_bytearray g_secret;
    felem_bytearray *secrets = NULL;
    smallfelem (*pre_comp)[17][3] = NULL;
    smallfelem *tmp_smallfelems = NULL;
    unsigned i;
    int num_bytes;
    int have_pre_comp = 0;
    size_t num_points = num;
    smallfelem x_in, y_in, z_in;
    felem x_out, y_out, z_out;
    NISTP256_PRE_COMP *pre = NULL;
    const smallfelem(*g_pre_comp)[16][3] = NULL;
    EC_POINT *generator = NULL;
    const EC_POINT *p = NULL;
    const BIGNUM *p_scalar = NULL;

    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    tmp_scalar = BN_CTX_get(ctx);
    if (tmp_scalar == NULL)
        goto err;

    if (scalar != NULL) {
        pre = group->pre_comp.nistp256;
        if (pre)
            /* we have precomputation, try to use it */
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
        else
            /* try to use the standard precomputation */
            g_pre_comp = &gmul[0];
        generator = EC_POINT_new(group);
        if (generator == NULL)
            goto err;
        /* get the generator from precomputation */
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
            !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
            !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
            ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
            goto err;
        }
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
                                                      generator, x, y, z,
                                                      ctx))
            goto err;
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
            /* precomputation matches generator */
            have_pre_comp = 1;
        else
            /*
             * we don't have valid precomputation: treat the generator as a
             * random point
             */
            num_points++;
    }
    if (num_points > 0) {
        if (num_points >= 3) {
            /*
             * unless we precompute multiples for just one or two points,
             * converting those into affine form is time well spent
             */
            mixed = 1;
        }
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
        if (mixed)
            tmp_smallfelems =
              OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
        if ((secrets == NULL) || (pre_comp == NULL)
            || (mixed && (tmp_smallfelems == NULL))) {
            ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
            goto err;
        }

        /*
         * we treat NULL scalars as 0, and NULL points as points at infinity,
         * i.e., they contribute nothing to the linear combination
         */
        memset(secrets, 0, sizeof(*secrets) * num_points);
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
        for (i = 0; i < num_points; ++i) {
            if (i == num) {
                /*
                 * we didn't have a valid precomputation, so we pick the
                 * generator
                 */
                p = EC_GROUP_get0_generator(group);
                p_scalar = scalar;
            } else {
                /* the i^th point */
                p = points[i];
                p_scalar = scalars[i];
            }
            if ((p_scalar != NULL) && (p != NULL)) {
                /* reduce scalar to 0 <= scalar < 2^256 */
                if ((BN_num_bits(p_scalar) > 256)
                    || (BN_is_negative(p_scalar))) {
                    /*
                     * this is an unusual input, and we don't guarantee
                     * constant-timeness
                     */
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
                        ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
                        goto err;
                    }
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
                                               secrets[i], sizeof(secrets[i]));
                } else {
                    num_bytes = BN_bn2lebinpad(p_scalar,
                                               secrets[i], sizeof(secrets[i]));
                }
                if (num_bytes < 0) {
                    ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
                    goto err;
                }
                /* precompute multiples */
                if ((!BN_to_felem(x_out, p->X)) ||
                    (!BN_to_felem(y_out, p->Y)) ||
                    (!BN_to_felem(z_out, p->Z)))
                    goto err;
                felem_shrink(pre_comp[i][1][0], x_out);
                felem_shrink(pre_comp[i][1][1], y_out);
                felem_shrink(pre_comp[i][1][2], z_out);
                for (j = 2; j <= 16; ++j) {
                    if (j & 1) {
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
                                        pre_comp[i][j][2], pre_comp[i][1][0],
                                        pre_comp[i][1][1], pre_comp[i][1][2],
                                        pre_comp[i][j - 1][0],
                                        pre_comp[i][j - 1][1],
                                        pre_comp[i][j - 1][2]);
                    } else {
                        point_double_small(pre_comp[i][j][0],
                                           pre_comp[i][j][1],
                                           pre_comp[i][j][2],
                                           pre_comp[i][j / 2][0],
                                           pre_comp[i][j / 2][1],
                                           pre_comp[i][j / 2][2]);
                    }
                }
            }
        }
        if (mixed)
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
    }

    /* the scalar for the generator */
    if ((scalar != NULL) && (have_pre_comp)) {
        memset(g_secret, 0, sizeof(g_secret));
        /* reduce scalar to 0 <= scalar < 2^256 */
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
            /*
             * this is an unusual input, and we don't guarantee
             * constant-timeness
             */
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
                ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
                goto err;
            }
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
        } else {
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
        }
        /* do the multiplication with generator precomputation */
        batch_mul(x_out, y_out, z_out,
                  (const felem_bytearray(*))secrets, num_points,
                  g_secret,
                  mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
    } else {
        /* do the multiplication without generator precomputation */
        batch_mul(x_out, y_out, z_out,
                  (const felem_bytearray(*))secrets, num_points,
                  NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
    }
    /* reduce the output to its unique minimal representation */
    felem_contract(x_in, x_out);
    felem_contract(y_in, y_out);
    felem_contract(z_in, z_out);
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
        (!smallfelem_to_BN(z, z_in))) {
        ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
        goto err;
    }
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);

 err:
    BN_CTX_end(ctx);
    EC_POINT_free(generator);
    OPENSSL_free(secrets);
    OPENSSL_free(pre_comp);
    OPENSSL_free(tmp_smallfelems);
    return ret;
}

int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
    int ret = 0;
    NISTP256_PRE_COMP *pre = NULL;
    int i, j;
    BN_CTX *new_ctx = NULL;
    BIGNUM *x, *y;
    EC_POINT *generator = NULL;
    smallfelem tmp_smallfelems[32];
    felem x_tmp, y_tmp, z_tmp;

    /* throw away old precomputation */
    EC_pre_comp_free(group);
    if (ctx == NULL)
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
            return 0;
    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;
    /* get the generator */
    if (group->generator == NULL)
        goto err;
    generator = EC_POINT_new(group);
    if (generator == NULL)
        goto err;
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
        goto err;
    if ((pre = nistp256_pre_comp_new()) == NULL)
        goto err;
    /*
     * if the generator is the standard one, use built-in precomputation
     */
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
        goto done;
    }
    if ((!BN_to_felem(x_tmp, group->generator->X)) ||
        (!BN_to_felem(y_tmp, group->generator->Y)) ||
        (!BN_to_felem(z_tmp, group->generator->Z)))
        goto err;
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
    /*
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
     * 2^160*G, 2^224*G for the second one
     */
    for (i = 1; i <= 8; i <<= 1) {
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
                           pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
                           pre->g_pre_comp[0][i][1],
                           pre->g_pre_comp[0][i][2]);
        for (j = 0; j < 31; ++j) {
            point_double_small(pre->g_pre_comp[1][i][0],
                               pre->g_pre_comp[1][i][1],
                               pre->g_pre_comp[1][i][2],
                               pre->g_pre_comp[1][i][0],
                               pre->g_pre_comp[1][i][1],
                               pre->g_pre_comp[1][i][2]);
        }
        if (i == 8)
            break;
        point_double_small(pre->g_pre_comp[0][2 * i][0],
                           pre->g_pre_comp[0][2 * i][1],
                           pre->g_pre_comp[0][2 * i][2],
                           pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
                           pre->g_pre_comp[1][i][2]);
        for (j = 0; j < 31; ++j) {
            point_double_small(pre->g_pre_comp[0][2 * i][0],
                               pre->g_pre_comp[0][2 * i][1],
                               pre->g_pre_comp[0][2 * i][2],
                               pre->g_pre_comp[0][2 * i][0],
                               pre->g_pre_comp[0][2 * i][1],
                               pre->g_pre_comp[0][2 * i][2]);
        }
    }
    for (i = 0; i < 2; i++) {
        /* g_pre_comp[i][0] is the point at infinity */
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
        /* the remaining multiples */
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
                        pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
                        pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
                        pre->g_pre_comp[i][2][2]);
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
                        pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
                        pre->g_pre_comp[i][2][2]);
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
                        pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
                        pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
                        pre->g_pre_comp[i][4][2]);
        /*
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
         */
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
                        pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
                        pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
                        pre->g_pre_comp[i][2][2]);
        for (j = 1; j < 8; ++j) {
            /* odd multiples: add G resp. 2^32*G */
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
                            pre->g_pre_comp[i][2 * j + 1][1],
                            pre->g_pre_comp[i][2 * j + 1][2],
                            pre->g_pre_comp[i][2 * j][0],
                            pre->g_pre_comp[i][2 * j][1],
                            pre->g_pre_comp[i][2 * j][2],
                            pre->g_pre_comp[i][1][0],
                            pre->g_pre_comp[i][1][1],
                            pre->g_pre_comp[i][1][2]);
        }
    }
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);

 done:
    SETPRECOMP(group, nistp256, pre);
    pre = NULL;
    ret = 1;

 err:
    BN_CTX_end(ctx);
    EC_POINT_free(generator);
    BN_CTX_free(new_ctx);
    EC_nistp256_pre_comp_free(pre);
    return ret;
}

int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
{
    return HAVEPRECOMP(group, nistp256);
}
#endif