- 09 9月, 2020 1 次提交
-
-
由 wenjun 提交于
-
- 17 8月, 2020 1 次提交
-
-
由 c00346986 提交于
Description:kernelspace musl code Team:OTHERS Feature or Bugfix:Feature Binary Source:NA PrivateCode(Yes/No):No Change-Id: I99874a7c570b7d22b4a3d34840260eb48ea3ffa1 Reviewed-on: http://mgit-tm.rnd.huawei.com/10276995Reviewed-by: Nshenwei 00579521 <denny.shenwei@huawei.com> Tested-by: Npublic jenkins <public_jenkins@notesmail.huawei.com>
-
- 24 11月, 2013 1 次提交
-
-
由 Szabolcs Nagy 提交于
- remove the HAVE_EFFICIENT_IRINT case: fn is an exact integer, so it can be converted to int32_t a bit more efficiently than with a cast (the rounding mode change can be avoided), but musl does not support this case on any arch. - __rem_pio2: use double_t where possible - __rem_pio2f: use less assignments to avoid stores on i386 - use unsigned int bit manipulation (and union instead of macros) - use hexfloat literals instead of named constants
-
- 07 9月, 2013 1 次提交
-
-
由 Szabolcs Nagy 提交于
gcc did not always drop excess precision according to c99 at assignments before version 4.5 even if -std=c99 was requested which caused badly broken mathematical functions on i386 when FLT_EVAL_METHOD!=0 but STRICT_ASSIGN was not used consistently and it is worked around for old compilers with -ffloat-store so it is no longer needed the new convention is to get the compiler respect c99 semantics and when excess precision is not harmful use float_t or double_t or to specialize code using FLT_EVAL_METHOD
-
- 20 3月, 2012 1 次提交
-
-
由 nsz 提交于
zero, one, two, half are replaced by const literals The policy was to use the f suffix for float consts (1.0f), but don't use suffix for long double consts (these consts can be exactly represented as double).
-
- 13 3月, 2012 1 次提交
-
-
由 Rich Felker 提交于
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best (from correctness and license standpoint) implementations from freebsd and openbsd and cleaning them up! musl should now fully support c99 float and long double math functions, and has near-complete complex math support. tgmath should also work (fully on gcc-compatible compilers, and mostly on any c99 compiler). based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from nsz's libm git repo, with some additions (dummy versions of a few missing long double complex functions, etc.) by me. various cleanups still need to be made, including re-adding (if they're correct) some asm functions that were dropped.
-