- 17 8月, 2020 1 次提交
-
-
由 c00346986 提交于
Description:kernelspace musl code Team:OTHERS Feature or Bugfix:Feature Binary Source:NA PrivateCode(Yes/No):No Change-Id: I99874a7c570b7d22b4a3d34840260eb48ea3ffa1 Reviewed-on: http://mgit-tm.rnd.huawei.com/10276995Reviewed-by: Nshenwei 00579521 <denny.shenwei@huawei.com> Tested-by: Npublic jenkins <public_jenkins@notesmail.huawei.com>
-
- 18 4月, 2019 1 次提交
-
-
由 Szabolcs Nagy 提交于
C99 has ways to support fenv access, but compilers don't implement it and assume nearest rounding mode and no fp status flag access. (gcc has -frounding-math and then it does not assume nearest rounding mode, but it still assumes the compiled code itself does not change the mode. Even if the C99 mechanism was implemented it is not ideal: it requires all code in the library to be compiled with FENV_ACCESS "on" to make it usable in non-nearest rounding mode, but that limits optimizations more than necessary.) The math functions should give reasonable results in all rounding modes (but the quality may be degraded in non-nearest rounding modes) and the fp status flag settings should follow the spec, so fenv side-effects are important and code transformations that break them should be prevented. Unfortunately compilers don't give any help with this, the best we can do is to add fp barriers to the code using volatile local variables (they create a stack frame and undesirable memory accesses to it) or inline asm (gcc specific, requires target specific fp reg constraints, often creates unnecessary reg moves and multiple barriers are needed to express that an operation has side-effects) or extern call (only useful in tail-call position to avoid stack-frame creation and does not work with lto). We assume that in a math function if an operation depends on the input and the output depends on it, then the operation will be evaluated at runtime when the function is called, producing all the expected fenv side-effects (this is not true in case of lto and in case the operation is evaluated with excess precision that is not rounded away). So fp barriers are needed (1) to prevent the move of an operation within a function (in case it may be moved from an unevaluated code path into an evaluated one or if it may be moved across a fenv access), (2) force the evaluation of an operation for its side-effect when it has no input dependency (may be constant folded) or (3) when its output is unused. I belive that fp_barrier and fp_force_eval can take care of these and they should not be needed in hot code paths.
-
- 20 10月, 2016 1 次提交
-
-
由 Szabolcs Nagy 提交于
aarch64, arm, mips, mips64, mipsn32, powerpc, powerpc64 and sh have cpu feature bits defined in linux for AT_HWCAP auxv entry, so expose those in sys/auxv.h it seems the mips hwcaps were never exposed to userspace neither by linux nor by glibc, but that's most likely an oversight.
-
- 28 1月, 2016 1 次提交
-
-
由 Rich Felker 提交于
all bits headers that were identical for a number of 'clean' archs are moved to the new arch/generic tree. in addition, a few headers that differed only cosmetically from the new generic version are removed. additional deduplication may be possible in mman.h and in several headers (limits.h, posix.h, stdint.h) that mostly depend on whether the arch is 32- or 64-bit, but they are left alone for now because greater gains are likely possible with more invasive changes to header logic, which is beyond the scope of this commit.
-
- 12 3月, 2015 1 次提交
-
-
由 Szabolcs Nagy 提交于
This adds complete aarch64 target support including bigendian subarch. Some of the long double math functions are known to be broken otherwise interfaces should be fully functional, but at this point consider this port experimental. Initial work on this port was done by Sireesh Tripurari and Kevin Bortis.
-
- 19 11月, 2012 1 次提交
-
-
由 Rich Felker 提交于
apparently some other archs have sys/io.h and should not break just because they don't have the x86 port io functions. provide a blank bits/io.h everywhere for now.
-
- 03 5月, 2012 1 次提交
-
-
由 Rich Felker 提交于
-
- 12 2月, 2011 1 次提交
-
-
由 Rich Felker 提交于
-