- 02 8月, 2019 1 次提交
-
-
由 Rich Felker 提交于
otherwise, 32-bit archs that could otherwise share the generic bits/ipc.h would need to duplicate the struct ipc_perm definition, obscuring the fact that it's the same. sysvipc is not widely used and these headers are not commonly included, so there is no performance gain to be had by limiting the number of indirectly included files here. files with the existing time32 definition of IPC_STAT are added to all current 32-bit archs now, so that when it's changed the change will show up as a change rather than addition of a new file where it's less obvious that the value is changing vs the generic one that was used before.
-
- 01 8月, 2019 2 次提交
-
-
由 Rich Felker 提交于
without this, the SIOCGSTAMP and SIOCGSTAMPNS ioctl commands, for obtaining timestamps, would stop working on pre-5.1 kernels after time_t is switched to 64-bit and their values are changed to the new time64 versions. new code is written such that it's statically unreachable on 64-bit archs, and on existing 32-bit archs until the macro values are changed to activate 64-bit time_t.
-
由 Rich Felker 提交于
without this, the SO_RCVTIMEO and SO_SNDTIMEO socket options would stop working on pre-5.1 kernels after time_t is switched to 64-bit and their values are changed to the new time64 versions. new code is written such that it's statically unreachable on 64-bit archs, and on existing 32-bit archs until the macro values are changed to activate 64-bit time_t.
-
- 31 7月, 2019 3 次提交
-
-
由 Rich Felker 提交于
these differ from generic only in using endian-matched padding with a short __ipc_perm_seq field in place of the int field in generic. this is not a documented public interface anyway, and the original intent was to use int here. some ports just inadvertently slipped in the kernel short+padding form.
-
由 Rich Felker 提交于
previously these differed from generic because they needed their own definitions of IPC_64. now that it's no longer in public header, they're identical.
-
由 Rich Felker 提交于
the definition of the IPC_64 macro controls the interface between libc and the kernel through syscalls; it's not a public API. the meaning is rather obscure. long ago, Linux's sysvipc *id_ds structures used 16-bit uids/gids and wrong types for a few other fields. this was in the libc5 era, before glibc. the IPC_64 flag (64 is a misnomer; it's more like 32) tells the kernel to use the modern[-ish] versions of the structures. the definition of IPC_64 has nothing to do with whether the arch is 32- or 64-bit. rather, due to either historical accident or intentional obnoxiousness, the kernel only accepts and masks off the 0x100 IPC_64 flag conditional on CONFIG_ARCH_WANT_IPC_PARSE_VERSION, i.e. for archs that want to provide, or that accidentally provided, both. for archs which don't define this option, no masking is performed and commands with the 0x100 bit set will fail as invalid. so ultimately, the definition is just a matter of matching an arbitrary switch defined per-arch in the kernel.
-
- 30 7月, 2019 12 次提交
-
-
由 Rich Felker 提交于
-
由 Rich Felker 提交于
this layout is more common already than the old generic, and should become even more common in the future with new archs added and with 64-bit time_t on 32-bit archs.
-
由 Rich Felker 提交于
-
由 Rich Felker 提交于
some of these were not exact duplicates, but had gratuitously different naming for padding, or omitted the endian checks because the arch is fixed-endian.
-
由 Rich Felker 提交于
this layout is slightly less common than the old generic one, but only because x86_64 and x32 wrongly (according to comments in the kernel headers) copied the i386 padding. for future archs, and with 64-bit time_t on 32-bit archs, the new layout here will become the most common, and it makes sense to treat it as the generic.
-
由 Rich Felker 提交于
having preprocessor conditionals on byte order in the bits headers for fixed-endian archs is confusing at best. remove them.
-
由 Rich Felker 提交于
-
由 Rich Felker 提交于
various padding fields in the generic bits/sem.h were defined in terms of time_t as a cheap hack standing in for "kernel long", to allow x32 to use the generic version of the file. this was a really bad idea, as it ended up getting copied into lots of arch-specific versions of the bits file, and is a blocker to changing time_t to 64-bit on 32-bit archs. this commit adds an x32-specific version of the header, and changes padding type back from time_t to long (currently the same type on all archs but x32) in the generic header and all the others the hack got copied into.
-
由 Rich Felker 提交于
-
由 Rich Felker 提交于
-
由 Rich Felker 提交于
this layout is more common already than the old generic, and should become even more common in the future with new archs added and with 64-bit time_t on 32-bit archs. the duplicate arch-specific copies are not removed yet in this commit, so as to assist git tooling in copy/rename tracking.
-
由 Rich Felker 提交于
there are more archs sharing the generic 64-bit version of the struct, which is uniform and much more reasonable, than sharing the current "generic" one, and depending on how time64 sysvipc is done for 32-bit archs, even more may be sharing the "64-bit version" in the future. so, duplicate the current generic to all archs using it (arm, i386, m68k, microblaze, or1k) so that the generic can be changed freely. this is recorded as its own commit mainly as a hint to git tooling, to assist in copy/move tracking.
-
- 29 7月, 2019 1 次提交
-
-
由 Rich Felker 提交于
the x32 syscall interfaces treat timespec's tv_nsec member as 64-bit despite the API type being long and long being 32-bit in the ABI. this is no problem for syscalls that store timespecs to userspace as results, but caused uninitialized padding to be misinterpreted as the high bits in syscalls that take timespecs as input. since the beginning of the port, we've dealt with this situation with hacks in syscall_arch.h, and injected between __syscall_cp_c and __syscall_cp_asm, to special-case the syscall numbers that involve timespecs as inputs and copy them to a form suitable to pass to the kernel. commit 40aa18d5 set the stage for removal of these hacks by letting us treat the "normal" x32 syscalls dealing with timespec as if they're x32's "time64" syscalls, effectively making x32 ax "time64-only 32-bit arch" like riscv32 will be when it's added. since then, all users of syscalls that x32's syscall_arch.h had hacks for have been updated to use time64 syscalls, so the hacks can be removed. there are still at least a few other timespec-related syscalls broken on x32, which were overlooked when the x32 hacks were done or added later. these include at least recvmmsg, adjtimex/clock_adjtime, and timerfd_settime, and they will be fixed independently later on.
-
- 28 7月, 2019 2 次提交
-
-
由 Rich Felker 提交于
x32 is odd in that it's the only ILP32 arch/ABI we have where time_t is 64-bit rather than (32-bit) long, and this has always been problematic in that it results in struct timespec having unused padding space, since tv_nsec has type long, which the kernel insists be zero- or sign-extended (due to negative tv_nsec being invalid, it doesn't matter which) to match the x86_64 type. up til now, we've had really ugly hacks in x32/syscall_arch.h to patch up the timespecs passed to the kernel. but the same requirement to zero- or sign-extend tv_nsec also applies to all the new time64 syscalls on true 32-bit archs. so let's take advantage of this to clean things up. this patch defines all of the time64 syscalls for x32 as aliases for the existing syscalls by the same name. this establishes the following invariants: - if the time64 form is defined, it takes time arguments as 64-bit objects, and tv_nsec inputs must be zero-/sign-extended to 64-bit. - if the time64 form is not defined, or if the time64 form is defined and is not equal to the "plain" form, the plain form takes time arguments as longs. this will avoid the need for protocols for archs to define appropriate types for each family of syscalls, and for the reader of the code to have to be aware of such type definitions. in some sense it might be simpler if the plain syscall form were undefined for x32, so that it would always take longs if defined. however, a number of these syscalls are used in contexts with a null time argument, or (e.g. futex) for commands that don't involve time at all, and having to introduce time64-specific logic to all those call points does not make sense. thus, while the "plain" forms are kept now just because they're needed until the affected code is converted over, they'll also almost surely be kept in the future as well.
-
由 Rich Felker 提交于
kernel support for x32 was added long after the utimensat syscall was already available, so having a fallback is just wasted code size. also, for changes related to time64 support on 32-bit archs, I want to be able to assume the old futimesat syscall always works with longs, which is true except for x32. by ensuring that it's not used on x32, the needed invariant is established.
-
- 19 7月, 2019 3 次提交
-
-
由 Rich Felker 提交于
now that we have a kstat structure decoupled from the public struct stat, we can just use the broken kernel structures directly and let the code in fstatat do the translation.
-
由 Rich Felker 提交于
presently, all archs/ABIs have struct stat matching the kernel stat[64] type, except mips/mipsn32/mips64 which do conversion hacks in syscall_arch.h to work around bugs in the kernel type. this patch completely decouples them and adds a translation step to the success path of fstatat. at present, this is just a gratuitous copying, but it opens up multiple possibilities for future support for 64-bit time_t on 32-bit archs and for cleaned-up/unified ABIs. for clarity, the mips hacks are not yet removed in this commit, so the mips kstat structs still correspond to the output of the hacks in their syscall_arch.h files, not the raw kernel type. a subsequent commit will fix this.
-
由 Rich Felker 提交于
these were overlooked during review. bits headers are not allowed to pull in additional headers (note: that rule is currently broken in other places but just for endian.h). string.h has no place here anyway, and including bits/alltypes.h without defining macros to request types from it is a nop.
-
- 18 7月, 2019 3 次提交
-
-
由 Rich Felker 提交于
the "A" constraint is simply for an address expression that's a single register, but it's not yet supported by clang, and has no advantage here over just using a register operand for the address. the latter is actually preferable in the a_cas_p case because it avoids aliasing an lvalue onto the memory.
-
由 Rich Felker 提交于
most egregious problem was the lack of memory clobber and lack of volatile asm; this made the atomics memory barriers but not compiler barriers. use of "+r" rather than "=r" for a clobbered temp was also wrong, since the initial value is indeterminate.
-
由 Rich Felker 提交于
having "+r"(a0) is redundant with "0"(a0) in syscalls with at least 1 arg, which is arguably a constraint violation (clang treats it as such), and an invalid input with indeterminate value in the 0-arg case. use the "=r"(a0) form instead.
-
- 17 7月, 2019 2 次提交
-
-
由 Rich Felker 提交于
ever since inline syscalls were added for (o32) mips in commit 328810d3, the asm has nonsensically loaded the syscall number, rather than taking $2 as an input constraint to let the compiler load it. commit cfc09b1e improved on this somewhat by allowing a constant syscall number to propagate into an immediate, but missed that the whole operation made no sense. now, only $4, $5, $6, $8, and $9 are potential input-only registers. $2 is always input and output, and $7 is both when it's an argument, otherwise output-only. previously, $7 was treated as an input (with a "1" constraint matching its output position) even when it was not an input, which was arguably undefined behavior (asm input from indeterminate value). this is corrected.
-
由 Rich Felker 提交于
this patch is not purely non-functional changes, since before, $8 and $9 were wrongly in the clobberlist for syscalls with fewer than 5 or 6 arguments. of course it's impossible for syscalls to have different clobbers depending on their number of arguments. the clobberlist for the recently-added 5- and 6-argument forms was correct, and for the 0- to 4-argument forms was erroneously copied from the mips o32 ABI where the additional arguments had to be passed on the stack. in making this change, I reviewed the kernel sources, and $8 and $9 are always saved for 64-bit kernels since they're part of the syscall argument list for n32 and n64 ABIs.
-
- 16 7月, 2019 1 次提交
-
-
由 Rich Felker 提交于
a fully thumb1 build is not supported because some asm files are incompatible with thumb1, but apparently it works to compile the C code as thumb1 commit 06fbefd1 caused this regression but introducing use of the clz instruction, which is not supported in arm mode prior to v5, and not supported in thumb prior to thumb2 (v6t2). commit 1b9406b0 fixed the issue only for arm mode pre-v5 but left thumb1 broken.
-
- 11 7月, 2019 1 次提交
-
-
由 Samuel Holland 提交于
Commit 3517d74a changed the token in sys/ioctl.h from 0x01 to 1, so bits/termios.h no longer matches. Revert the bits/termios.h change to keep the headers in sync. This reverts commit 9eda4dc6.
-
- 05 7月, 2019 1 次提交
-
-
由 Rich Felker 提交于
this was apparently copied from x86_64; it's not part of the kernel API for riscv64. this change eliminates the need for a riscv64-specific bits header and lets it use the generic one.
-
- 02 7月, 2019 3 次提交
-
-
由 Szabolcs Nagy 提交于
syscall numbers are now synced up across targets (starting from 403 the numbers are the same on all targets other than an arch specific offset) IPC syscalls sem*, shm*, msg* got added where they were missing (except for semop: only semtimedop got added), the new semctl, shmctl, msgctl imply IPC_64, see linux commit 0d6040d4681735dfc47565de288525de405a5c99 arch: add split IPC system calls where needed new 64bit time_t syscall variants got added on 32bit targets, see linux commit 48166e6ea47d23984f0b481ca199250e1ce0730a y2038: add 64-bit time_t syscalls to all 32-bit architectures new async io syscalls got added, see linux commit 2b188cc1bb857a9d4701ae59aa7768b5124e262e Add io_uring IO interface linux commit edafccee56ff31678a091ddb7219aba9b28bc3cb io_uring: add support for pre-mapped user IO buffers a new syscall got added that uses the fd of /proc/<pid> as a stable handle for processes: allows sending signals without pid reuse issues, intended to eventually replace rt_sigqueueinfo, kill, tgkill and rt_tgsigqueueinfo, see linux commit 3eb39f47934f9d5a3027fe00d906a45fe3a15fad signal: add pidfd_send_signal() syscall on some targets (arm, m68k, s390x, sh) some previously missing syscall numbers got added as well.
-
由 Szabolcs Nagy 提交于
the numbers added in commit d149e69c add io_pgetevents and rseq syscall numbers from linux v4.18 were incorrect.
-
由 Szabolcs Nagy 提交于
the s390x definitions matched the generic ones in sys/socket.h.
-
- 15 6月, 2019 1 次提交
-
-
由 Rich Felker 提交于
Author: Alex Suykov <alex.suykov@gmail.com> Author: Aric Belsito <lluixhi@gmail.com> Author: Drew DeVault <sir@cmpwn.com> Author: Michael Clark <mjc@sifive.com> Author: Michael Forney <mforney@mforney.org> Author: Stefan O'Rear <sorear2@gmail.com> This port has involved the work of many people over several years. I have tried to ensure that everyone with substantial contributions has been credited above; if any omissions are found they will be noted later in an update to the authors/contributors list in the COPYRIGHT file. The version committed here comes from the riscv/riscv-musl repo's commit 3fe7e2c75df78eef42dcdc352a55757729f451e2, with minor changes by me for issues found during final review: - a_ll/a_sc atomics are removed (according to the ISA spec, lr/sc are not safe to use in separate inline asm fragments) - a_cas[_p] is fixed to be a memory barrier - the call from the _start assembly into the C part of crt1/ldso is changed to allow for the possibility that the linker does not place them nearby each other. - DTP_OFFSET is defined correctly so that local-dynamic TLS works - reloc.h LDSO_ARCH logic is simplified and made explicit. - unused, non-functional crti/n asm files are removed. - an empty .sdata section is added to crt1 so that the __global_pointer reference is resolvable. - indentation style errors in some asm files are fixed.
-
- 23 5月, 2019 2 次提交
-
-
由 Rich Felker 提交于
between v2 and v3 of the powerpc64 port patch, the change was made from a 32x4 array of 32-bit unsigned ints for vrregs[] to a 32-element array of __int128. this mismatches the API applications working with mcontext_t expect from glibc, and seems to have been motivated by a misinterpretation of a comment on how aarch64 did things as a suggestion to do the same on powerpc64.
-
由 Rich Felker 提交于
the mistaken layout seems to have been adapted from 32-bit powerpc, where vscr and vrsave are packed into the same 128-bit slot in a way that looks like it relies on non-overlapping-ness of the value bits in big endian. the powerpc64 port accounted for the fact that the 64-bit ABI puts each in its own 128-bit slot, but ordered them incorrectly (matching the bit order used on the 32-bit ABI), and failed to account for vscr being padded according to endianness so that it can be accessed via vector moves. in addition to ABI layout, our definition used different logical member layout/naming from glibc, where vscr is a structure to facilitate access as a 32-bit word or a 128-bit vector. the inconsistency here was unintentional, so fix it.
-
- 12 5月, 2019 1 次提交
-
-
由 Rich Felker 提交于
we have to avoid using ebx unconditionally in asm constraints for i386, because gcc 3 and 4 and possibly other simplistic compilers (pcc?) implement PIC via making ebx a fixed-use register, and disallow its use for anything else. rather than hard-coding knowledge of which compilers work (at least gcc 5+ and clang), perform a configure test; this should give us the good codegen on any new compilers we don't yet know about. swapping ebx and edx is kept for 1- and 2-arg syscalls because it avoids having any spills/stack-frame at all in small functions. for 6-arg, if ebx is directly usable, the complex shuffling introduced in commit c8798ef9 can be avoided, and ebp can be loaded the same way ebx is in 5-arg syscalls for compilers that don't support direct use of ebx.
-
- 11 5月, 2019 1 次提交
-
-
由 Rich Felker 提交于
commit 22e5bbd0 inlined the i386 syscall mechanism, but wrongly assumed memory operands to the 5- and 6-argument syscall asm would be esp-based. however, nothing in the constraints prevented them from being ebx- or ebp-based, and in those cases, ebx and ebp could be clobbered before use of the memory operand was complete. in the 6-argument case, this prevented restoration of the original register values before the end of the asm block, breaking the asm contract since ebx and ebp are not marked as clobbered. (they can't be, because lots of compilers don't accept these registers in constraints or clobbers if PIC or frame pointer is enabled). doing this right is complicated by the fact that, after a single push, no operands which might be memory operands are usable. if they are esp-based, the value of esp has changed, rendering them invalid. introduce some new dances to load the registers. for the 5-arg case, push the operand that may be a memory operand first, and after that, it doesn't matter if the operand is invalid, since we'll just use the newly pushed value. for the 6-arg case, we need to put both operands in memory to begin with, like the old non-inline code prior to commit 22e5bbd0 accepted, so that there's only one potentially memory-based operand to the asm. this can then be saved with a single push, and after that the values can be read off into the registers they're needed in. there's some size overhead, but still a lot less execution overhead than the old out-of-line code. doing it better depends on a modern compiler that lets you use ebx and ebp in asm constraints without restriction. the failure modes on compilers where this doesn't work are inconsistent and dangerous (on at least some gcc versions 4.x and earlier, wrong codegen!), so this is a delicate matter. it can be addressed later if needed.
-