提交 61b1e75f 编写于 作者: R Rich Felker

overhaul sh atomics for new atomics framework, add j-core cas.l backend

sh needs runtime-selected atomic backends since there are a number of
supported models that use non-forwards-compatible (non-smp-compatible)
atomic mechanisms. previously, the code paths for this were highly
inefficient since they involved C function calls with multiple
branches in the callee and heavy spills in the caller. the new code
performs calls the runtime-selected asm fragment from inline asm with
extremely minimal clobbers, rather than using a function call.

for the sh4a case where the atomic mechanism is known and there is no
forward-compatibility issue, the movli.l and movco.l instructions are
provided as a_ll and a_sc, allowing the new shared atomic.h to
generate efficient inline versions of all the basic atomic operations
without needing a cas loop.
上级 1315596b
#define LLSC_CLOBBERS "r0", "t", "memory"
#define LLSC_START(mem) "synco\n" \
"0: movli.l @" mem ", r0\n"
#define LLSC_END(mem) \
"1: movco.l r0, @" mem "\n" \
" bf 0b\n" \
" synco\n"
#if defined(__SH4A__)
static inline int __sh_cas_llsc(volatile int *p, int t, int s)
#define a_ll a_ll
static inline int a_ll(volatile int *p)
{
int old;
__asm__ __volatile__(
LLSC_START("%1")
" mov r0, %0\n"
" cmp/eq %0, %2\n"
" bf 1f\n"
" mov %3, r0\n"
LLSC_END("%1")
: "=&r"(old) : "r"(p), "r"(t), "r"(s) : LLSC_CLOBBERS);
return old;
int v;
__asm__ __volatile__ ("movli.l @%1, %0" : "=z"(v) : "r"(p), "m"(*p));
return v;
}
static inline int __sh_swap_llsc(volatile int *x, int v)
#define a_sc a_sc
static inline int a_sc(volatile int *p, int v)
{
int old;
__asm__ __volatile__(
LLSC_START("%1")
" mov r0, %0\n"
" mov %2, r0\n"
LLSC_END("%1")
: "=&r"(old) : "r"(x), "r"(v) : LLSC_CLOBBERS);
return old;
int r;
__asm__ __volatile__ (
"movco.l %2, @%3 ; movt %0"
: "=r"(r), "=m"(*p) : "z"(v), "r"(p) : "memory", "cc");
return r;
}
static inline int __sh_fetch_add_llsc(volatile int *x, int v)
#define a_barrier a_barrier
static inline void a_barrier()
{
int old;
__asm__ __volatile__(
LLSC_START("%1")
" mov r0, %0\n"
" add %2, r0\n"
LLSC_END("%1")
: "=&r"(old) : "r"(x), "r"(v) : LLSC_CLOBBERS);
return old;
__asm__ __volatile__ ("synco" : : "memory");
}
static inline void __sh_store_llsc(volatile int *p, int x)
{
__asm__ __volatile__(
" synco\n"
" mov.l %1, @%0\n"
" synco\n"
: : "r"(p), "r"(x) : "memory");
}
#define a_pre_llsc a_barrier
#define a_post_llsc a_barrier
static inline void __sh_and_llsc(volatile int *x, int v)
{
__asm__ __volatile__(
LLSC_START("%0")
" and %1, r0\n"
LLSC_END("%0")
: : "r"(x), "r"(v) : LLSC_CLOBBERS);
}
#else
static inline void __sh_or_llsc(volatile int *x, int v)
#define a_cas a_cas
__attribute__((__visibility__("hidden"))) extern const void *__sh_cas_ptr;
static inline int a_cas(volatile int *p, int t, int s)
{
__asm__ __volatile__(
LLSC_START("%0")
" or %1, r0\n"
LLSC_END("%0")
: : "r"(x), "r"(v) : LLSC_CLOBBERS);
register int r1 __asm__("r1");
register int r2 __asm__("r2") = t;
register int r3 __asm__("r3") = s;
__asm__ __volatile__ (
"jsr @%4 ; nop"
: "=r"(r1), "+r"(r3) : "z"(p), "r"(r2), "r"(__sh_cas_ptr)
: "memory", "pr", "cc");
return r3;
}
#ifdef __SH4A__
#define a_cas(p,t,s) __sh_cas_llsc(p,t,s)
#define a_swap(x,v) __sh_swap_llsc(x,v)
#define a_fetch_add(x,v) __sh_fetch_add_llsc(x, v)
#define a_store(x,v) __sh_store_llsc(x, v)
#define a_and(x,v) __sh_and_llsc(x, v)
#define a_or(x,v) __sh_or_llsc(x, v)
#else
int __sh_cas(volatile int *, int, int);
int __sh_swap(volatile int *, int);
int __sh_fetch_add(volatile int *, int);
void __sh_store(volatile int *, int);
void __sh_and(volatile int *, int);
void __sh_or(volatile int *, int);
#define a_cas(p,t,s) __sh_cas(p,t,s)
#define a_swap(x,v) __sh_swap(x,v)
#define a_fetch_add(x,v) __sh_fetch_add(x, v)
#define a_store(x,v) __sh_store(x, v)
#define a_and(x,v) __sh_and(x, v)
#define a_or(x,v) __sh_or(x, v)
#endif
#ifndef __SH4A__
#include "sh_atomic.h"
#include "atomic.h"
#include "libc.h"
static inline unsigned mask()
{
unsigned sr;
__asm__ __volatile__ ( "\n"
" stc sr,r0 \n"
" mov r0,%0 \n"
" or #0xf0,r0 \n"
" ldc r0,sr \n"
: "=&r"(sr) : : "memory", "r0" );
return sr;
}
static inline void unmask(unsigned sr)
{
__asm__ __volatile__ ( "ldc %0,sr" : : "r"(sr) : "memory" );
}
/* gusa is a hack in the kernel which lets you create a sequence of instructions
* which will be restarted if the process is preempted in the middle of the
* sequence. It will do for implementing atomics on non-smp systems. ABI is:
* r0 = address of first instruction after the atomic sequence
* r1 = original stack pointer
* r15 = -1 * length of atomic sequence in bytes
*/
#define GUSA_CLOBBERS "r0", "r1", "memory"
#define GUSA_START(mem,old,nop) \
" .align 2\n" \
" mova 1f, r0\n" \
nop \
" mov r15, r1\n" \
" mov #(0f-1f), r15\n" \
"0: mov.l @" mem ", " old "\n"
/* the target of mova must be 4 byte aligned, so we may need a nop */
#define GUSA_START_ODD(mem,old) GUSA_START(mem,old,"")
#define GUSA_START_EVEN(mem,old) GUSA_START(mem,old,"\tnop\n")
#define GUSA_END(mem,new) \
" mov.l " new ", @" mem "\n" \
"1: mov r1, r15\n"
int __sh_cas(volatile int *p, int t, int s)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_cas_llsc(p, t, s);
if (__sh_atomic_model == SH_A_IMASK) {
unsigned sr = mask();
int old = *p;
if (old==t) *p = s;
unmask(sr);
return old;
}
int old;
__asm__ __volatile__(
GUSA_START_EVEN("%1", "%0")
" cmp/eq %0, %2\n"
" bf 1f\n"
GUSA_END("%1", "%3")
: "=&r"(old) : "r"(p), "r"(t), "r"(s) : GUSA_CLOBBERS, "t");
return old;
}
int __sh_swap(volatile int *x, int v)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_swap_llsc(x, v);
if (__sh_atomic_model == SH_A_IMASK) {
unsigned sr = mask();
int old = *x;
*x = v;
unmask(sr);
return old;
}
int old;
__asm__ __volatile__(
GUSA_START_EVEN("%1", "%0")
GUSA_END("%1", "%2")
: "=&r"(old) : "r"(x), "r"(v) : GUSA_CLOBBERS);
return old;
}
int __sh_fetch_add(volatile int *x, int v)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_fetch_add_llsc(x, v);
if (__sh_atomic_model == SH_A_IMASK) {
unsigned sr = mask();
int old = *x;
*x = old + v;
unmask(sr);
return old;
}
int old, dummy;
__asm__ __volatile__(
GUSA_START_EVEN("%2", "%0")
" mov %0, %1\n"
" add %3, %1\n"
GUSA_END("%2", "%1")
: "=&r"(old), "=&r"(dummy) : "r"(x), "r"(v) : GUSA_CLOBBERS);
return old;
}
void __sh_store(volatile int *p, int x)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_store_llsc(p, x);
__asm__ __volatile__(
" mov.l %1, @%0\n"
: : "r"(p), "r"(x) : "memory");
}
void __sh_and(volatile int *x, int v)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_and_llsc(x, v);
if (__sh_atomic_model == SH_A_IMASK) {
unsigned sr = mask();
int old = *x;
*x = old & v;
unmask(sr);
return;
}
int dummy;
__asm__ __volatile__(
GUSA_START_ODD("%1", "%0")
" and %2, %0\n"
GUSA_END("%1", "%0")
: "=&r"(dummy) : "r"(x), "r"(v) : GUSA_CLOBBERS);
}
void __sh_or(volatile int *x, int v)
{
if (__sh_atomic_model == SH_A_LLSC) return __sh_or_llsc(x, v);
if (__sh_atomic_model == SH_A_IMASK) {
unsigned sr = mask();
int old = *x;
*x = old | v;
unmask(sr);
return;
}
int dummy;
__asm__ __volatile__(
GUSA_START_ODD("%1", "%0")
" or %2, %0\n"
GUSA_END("%1", "%0")
: "=&r"(dummy) : "r"(x), "r"(v) : GUSA_CLOBBERS);
}
#endif
#ifndef _SH_ATOMIC_H
#define _SH_ATOMIC_H
#define SH_A_GUSA 0
#define SH_A_LLSC 1
#define SH_A_CAS 2
#if !defined(__SH3__) && !defined(__SH4__)
#define SH_A_IMASK 3
#else
#define SH_A_IMASK -1LL /* unmatchable by unsigned int */
#endif
extern __attribute__((__visibility__("hidden"))) unsigned __sh_atomic_model;
#endif
#include "pthread_impl.h"
#include "libc.h"
#include "sh_atomic.h"
#include <elf.h>
/* Also perform sh-specific init */
#define CPU_HAS_LLSC 0x0040
#define CPU_HAS_CAS_L 0x0400
__attribute__((__visibility__("hidden"))) unsigned __sh_atomic_model, __sh_nommu;
__attribute__((__visibility__("hidden")))
extern const char __sh_cas_gusa[], __sh_cas_llsc[], __sh_cas_imask[], __sh_cas_cas_l[];
__attribute__((__visibility__("hidden")))
const void *__sh_cas_ptr;
__attribute__((__visibility__("hidden")))
unsigned __sh_nommu;
int __set_thread_area(void *p)
{
size_t *aux;
__asm__ __volatile__ ( "ldc %0, gbr" : : "r"(p) : "memory" );
#ifndef __SH4A__
if (__hwcap & CPU_HAS_LLSC) {
__sh_atomic_model = SH_A_LLSC;
return 0;
}
__sh_cas_ptr = __sh_cas_gusa;
#if !defined(__SH3__) && !defined(__SH4__)
for (aux=libc.auxv; *aux; aux+=2) {
if (*aux != AT_PLATFORM) continue;
const char *s = (void *)aux[1];
if (s[0]!='s' || s[1]!='h' || s[2]!='2' || s[3]-'0'<10u) break;
__sh_atomic_model = SH_A_IMASK;
__sh_cas_ptr = __sh_cas_imask;
__sh_nommu = 1;
return 0;
}
#endif
/* __sh_atomic_model = SH_A_GUSA; */ /* 0, default */
if (__hwcap & CPU_HAS_CAS_L)
__sh_cas_ptr = __sh_cas_cas_l;
else if (__hwcap & CPU_HAS_LLSC)
__sh_cas_ptr = __sh_cas_llsc;
#endif
return 0;
}
/* Contract for all versions is same as cas.l r2,r3,@r0
* pr and r1 are also clobbered (by jsr & r1 as temp).
* r0,r2,r4-r15 must be preserved.
* r3 contains result (==r2 iff cas succeeded). */
.align 2
.global __sh_cas_gusa
.hidden __sh_cas_gusa
__sh_cas_gusa:
mov.l r5,@-r15
mov.l r4,@-r15
mov r0,r4
mova 1f,r0
mov r15,r1
mov #(0f-1f),r15
0: mov.l @r4,r5
cmp/eq r5,r2
bf 1f
mov.l r3,@r4
1: mov r1,r15
mov r5,r3
mov r4,r0
mov.l @r15+,r4
rts
mov.l @r15+,r5
.global __sh_cas_llsc
.hidden __sh_cas_llsc
__sh_cas_llsc:
mov r0,r1
synco
0: movli.l @r1,r0
cmp/eq r0,r2
bf 1f
mov r3,r0
movco.l r0,@r1
bf 0b
mov r2,r0
1: synco
mov r0,r3
rts
mov r1,r0
.global __sh_cas_imask
.hidden __sh_cas_imask
__sh_cas_imask:
mov r0,r1
stc sr,r0
mov.l r0,@-r15
or #0xf0,r0
ldc r0,sr
mov.l @r1,r0
cmp/eq r0,r2
bf 1f
mov.l r3,@r1
1: ldc.l @r15+,sr
mov r0,r3
rts
mov r1,r0
.global __sh_cas_cas_l
.hidden __sh_cas_cas_l
__sh_cas_cas_l:
rts
.word 0x2323 /* cas.l r2,r3,@r0 */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册