e_sqrt.c 17.5 KB
Newer Older
R
Rich Felker 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

/* @(#)e_sqrt.c 1.3 95/01/18 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

/* sqrt(x)
 * Return correctly rounded sqrt.
 *           ------------------------------------------
 *           |  Use the hardware sqrt if you have one |
 *           ------------------------------------------
 * Method: 
 *   Bit by bit method using integer arithmetic. (Slow, but portable) 
 *   1. Normalization
 *      Scale x to y in [1,4) with even powers of 2: 
 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
 *              sqrt(x) = 2^k * sqrt(y)
 *   2. Bit by bit computation
 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 *           i                                                   0
 *                                     i+1         2
 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
 *           i      i            i                 i
 *                                                        
 *      To compute q    from q , one checks whether 
 *                  i+1       i                       
 *
 *                            -(i+1) 2
 *                      (q + 2      ) <= y.                     (2)
 *                        i
 *                                                            -(i+1)
 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 *                             i+1   i             i+1   i
 *
 *      With some algebric manipulation, it is not difficult to see
 *      that (2) is equivalent to 
 *                             -(i+1)
 *                      s  +  2       <= y                      (3)
 *                       i                i
 *
 *      The advantage of (3) is that s  and y  can be computed by 
 *                                    i      i
 *      the following recurrence formula:
 *          if (3) is false
 *
 *          s     =  s  ,       y    = y   ;                    (4)
 *           i+1      i          i+1    i
 *
 *          otherwise,
 *                         -i                     -(i+1)
 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
 *           i+1      i          i+1    i     i
 *                              
 *      One may easily use induction to prove (4) and (5). 
 *      Note. Since the left hand side of (3) contain only i+2 bits,
 *            it does not necessary to do a full (53-bit) comparison 
 *            in (3).
 *   3. Final rounding
 *      After generating the 53 bits result, we compute one more bit.
 *      Together with the remainder, we can decide whether the
 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
 *      (it will never equal to 1/2ulp).
 *      The rounding mode can be detected by checking whether
 *      huge + tiny is equal to huge, and whether huge - tiny is
 *      equal to huge for some floating point number "huge" and "tiny".
 *              
 * Special cases:
 *      sqrt(+-0) = +-0         ... exact
 *      sqrt(inf) = inf
 *      sqrt(-ve) = NaN         ... with invalid signal
 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
 *
 * Other methods : see the appended file at the end of the program below.
 *---------------
 */

#include <math.h>
#include "math_private.h"

static  const double    one     = 1.0, tiny=1.0e-300;

double
sqrt(double x)
{
        double z;
        int32_t sign = (int)0x80000000;
        int32_t ix0,s0,q,m,t,i;
        uint32_t r,t1,s1,ix1,q1;

        EXTRACT_WORDS(ix0,ix1,x);

    /* take care of Inf and NaN */
        if((ix0&0x7ff00000)==0x7ff00000) {                      
            return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
                                           sqrt(-inf)=sNaN */
        } 
    /* take care of zero */
        if(ix0<=0) {
            if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
            else if(ix0<0)
                return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
        }
    /* normalize x */
        m = (ix0>>20);
        if(m==0) {                              /* subnormal x */
            while(ix0==0) {
                m -= 21;
                ix0 |= (ix1>>11); ix1 <<= 21;
            }
            for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
            m -= i-1;
            ix0 |= (ix1>>(32-i));
            ix1 <<= i;
        }
        m -= 1023;      /* unbias exponent */
        ix0 = (ix0&0x000fffff)|0x00100000;
        if(m&1){        /* odd m, double x to make it even */
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
        }
        m >>= 1;        /* m = [m/2] */

    /* generate sqrt(x) bit by bit */
        ix0 += ix0 + ((ix1&sign)>>31);
        ix1 += ix1;
        q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
        r = 0x00200000;         /* r = moving bit from right to left */

        while(r!=0) {
            t = s0+r; 
            if(t<=ix0) { 
                s0   = t+r; 
                ix0 -= t; 
                q   += r; 
            } 
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
            r>>=1;
        }

        r = sign;
        while(r!=0) {
            t1 = s1+r; 
            t  = s0;
            if((t<ix0)||((t==ix0)&&(t1<=ix1))) { 
                s1  = t1+r;
                if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
                ix0 -= t;
                if (ix1 < t1) ix0 -= 1;
                ix1 -= t1;
                q1  += r;
            }
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
            r>>=1;
        }

    /* use floating add to find out rounding direction */
        if((ix0|ix1)!=0) {
            z = one-tiny; /* trigger inexact flag */
            if (z>=one) {
                z = one+tiny;
                if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
                else if (z>one) {
                    if (q1==(uint32_t)0xfffffffe) q+=1;
                    q1+=2; 
                } else
                    q1 += (q1&1);
            }
        }
        ix0 = (q>>1)+0x3fe00000;
        ix1 =  q1>>1;
        if ((q&1)==1) ix1 |= sign;
        ix0 += (m <<20);
        INSERT_WORDS(z,ix0,ix1);
        return z;
}

/*
Other methods  (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan 
and K.C. Ng, written in May, 1986)

        Two algorithms are given here to implement sqrt(x) 
        (IEEE double precision arithmetic) in software.
        Both supply sqrt(x) correctly rounded. The first algorithm (in
        Section A) uses newton iterations and involves four divisions.
        The second one uses reciproot iterations to avoid division, but
        requires more multiplications. Both algorithms need the ability
        to chop results of arithmetic operations instead of round them, 
        and the INEXACT flag to indicate when an arithmetic operation
        is executed exactly with no roundoff error, all part of the 
        standard (IEEE 754-1985). The ability to perform shift, add,
        subtract and logical AND operations upon 32-bit words is needed
        too, though not part of the standard.

A.  sqrt(x) by Newton Iteration

   (1)  Initial approximation

        Let x0 and x1 be the leading and the trailing 32-bit words of
        a floating point number x (in IEEE double format) respectively 

            1    11                  52                           ...widths
           ------------------------------------------------------
        x: |s|    e     |             f                         |
           ------------------------------------------------------
              msb    lsb  msb                                 lsb ...order

 
             ------------------------        ------------------------
        x0:  |s|   e    |    f1     |    x1: |          f2           |
             ------------------------        ------------------------

        By performing shifts and subtracts on x0 and x1 (both regarded
        as integers), we obtain an 8-bit approximation of sqrt(x) as
        follows.

                k  := (x0>>1) + 0x1ff80000;
                y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
        Here k is a 32-bit integer and T1[] is an integer array containing
        correction terms. Now magically the floating value of y (y's
        leading 32-bit word is y0, the value of its trailing word is 0)
        approximates sqrt(x) to almost 8-bit.

        Value of T1:
        static int T1[32]= {
        0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
        29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
        83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
        16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};

    (2) Iterative refinement

        Apply Heron's rule three times to y, we have y approximates 
        sqrt(x) to within 1 ulp (Unit in the Last Place):

                y := (y+x/y)/2          ... almost 17 sig. bits
                y := (y+x/y)/2          ... almost 35 sig. bits
                y := y-(y-x/y)/2        ... within 1 ulp


        Remark 1.
            Another way to improve y to within 1 ulp is:

                y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
                y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)

                                2
                            (x-y )*y
                y := y + 2* ----------  ...within 1 ulp
                               2
                             3y  + x


        This formula has one division fewer than the one above; however,
        it requires more multiplications and additions. Also x must be
        scaled in advance to avoid spurious overflow in evaluating the
        expression 3y*y+x. Hence it is not recommended uless division
        is slow. If division is very slow, then one should use the 
        reciproot algorithm given in section B.

    (3) Final adjustment

        By twiddling y's last bit it is possible to force y to be 
        correctly rounded according to the prevailing rounding mode
        as follows. Let r and i be copies of the rounding mode and
        inexact flag before entering the square root program. Also we
        use the expression y+-ulp for the next representable floating
        numbers (up and down) of y. Note that y+-ulp = either fixed
        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
        mode.

                I := FALSE;     ... reset INEXACT flag I
                R := RZ;        ... set rounding mode to round-toward-zero
                z := x/y;       ... chopped quotient, possibly inexact
                If(not I) then {        ... if the quotient is exact
                    if(z=y) {
                        I := i;  ... restore inexact flag
                        R := r;  ... restore rounded mode
                        return sqrt(x):=y.
                    } else {
                        z := z - ulp;   ... special rounding
                    }
                }
                i := TRUE;              ... sqrt(x) is inexact
                If (r=RN) then z=z+ulp  ... rounded-to-nearest
                If (r=RP) then {        ... round-toward-+inf
                    y = y+ulp; z=z+ulp;
                }
                y := y+z;               ... chopped sum
                y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
                I := i;                 ... restore inexact flag
                R := r;                 ... restore rounded mode
                return sqrt(x):=y.
                    
    (4) Special cases

        Square root of +inf, +-0, or NaN is itself;
        Square root of a negative number is NaN with invalid signal.


B.  sqrt(x) by Reciproot Iteration

   (1)  Initial approximation

        Let x0 and x1 be the leading and the trailing 32-bit words of
        a floating point number x (in IEEE double format) respectively
        (see section A). By performing shifs and subtracts on x0 and y0,
        we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.

            k := 0x5fe80000 - (x0>>1);
            y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits

        Here k is a 32-bit integer and T2[] is an integer array 
        containing correction terms. Now magically the floating
        value of y (y's leading 32-bit word is y0, the value of
        its trailing word y1 is set to zero) approximates 1/sqrt(x)
        to almost 7.8-bit.

        Value of T2:
        static int T2[64]= {
        0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
        0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
        0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
        0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
        0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
        0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
        0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
        0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};

    (2) Iterative refinement

        Apply Reciproot iteration three times to y and multiply the
        result by x to get an approximation z that matches sqrt(x)
        to about 1 ulp. To be exact, we will have 
                -1ulp < sqrt(x)-z<1.0625ulp.
        
        ... set rounding mode to Round-to-nearest
           y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
           y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
        ... special arrangement for better accuracy
           z := x*y                     ... 29 bits to sqrt(x), with z*y<1
           z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)

        Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
        (a) the term z*y in the final iteration is always less than 1; 
        (b) the error in the final result is biased upward so that
                -1 ulp < sqrt(x) - z < 1.0625 ulp
            instead of |sqrt(x)-z|<1.03125ulp.

    (3) Final adjustment

        By twiddling y's last bit it is possible to force y to be 
        correctly rounded according to the prevailing rounding mode
        as follows. Let r and i be copies of the rounding mode and
        inexact flag before entering the square root program. Also we
        use the expression y+-ulp for the next representable floating
        numbers (up and down) of y. Note that y+-ulp = either fixed
        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
        mode.

        R := RZ;                ... set rounding mode to round-toward-zero
        switch(r) {
            case RN:            ... round-to-nearest
               if(x<= z*(z-ulp)...chopped) z = z - ulp; else
               if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
               break;
            case RZ:case RM:    ... round-to-zero or round-to--inf
               R:=RP;           ... reset rounding mod to round-to-+inf
               if(x<z*z ... rounded up) z = z - ulp; else
               if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
               break;
            case RP:            ... round-to-+inf
               if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
               if(x>z*z ...chopped) z = z+ulp;
               break;
        }

        Remark 3. The above comparisons can be done in fixed point. For
        example, to compare x and w=z*z chopped, it suffices to compare
        x1 and w1 (the trailing parts of x and w), regarding them as
        two's complement integers.

        ...Is z an exact square root?
        To determine whether z is an exact square root of x, let z1 be the
        trailing part of z, and also let x0 and x1 be the leading and
        trailing parts of x.

        If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
            I := 1;             ... Raise Inexact flag: z is not exact
        else {
            j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
            k := z1 >> 26;              ... get z's 25-th and 26-th 
                                            fraction bits
            I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
        }
        R:= r           ... restore rounded mode
        return sqrt(x):=z.

        If multiplication is cheaper then the foregoing red tape, the 
        Inexact flag can be evaluated by

            I := i;
            I := (z*z!=x) or I.

        Note that z*z can overwrite I; this value must be sensed if it is 
        True.

        Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
        zero.

                    --------------------
                z1: |        f2        | 
                    --------------------
                bit 31             bit 0

        Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
        or even of logb(x) have the following relations:

        -------------------------------------------------
        bit 27,26 of z1         bit 1,0 of x1   logb(x)
        -------------------------------------------------
        00                      00              odd and even
        01                      01              even
        10                      10              odd
        10                      00              even
        11                      01              even
        -------------------------------------------------

    (4) Special cases (see (4) of Section A).   
 
 */