log2l.c 4.5 KB
Newer Older
R
Rich Felker 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log2l.c */
/*
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
/*
 *      Base 2 logarithm, long double precision
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, log2l();
 *
 * y = log2l( x );
 *
 *
 * DESCRIPTION:
 *
 * Returns the base 2 logarithm of x.
 *
 * The argument is separated into its exponent and fractional
 * parts.  If the exponent is between -1 and +1, the (natural)
 * logarithm of the fraction is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * Otherwise, setting  z = 2(x-1)/x+1),
 *
 *     log(x) = z + z**3 P(z)/Q(z).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20
 *    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20
 *
 * In the tests over the interval exp(+-10000), the logarithms
 * of the random arguments were uniformly distributed over
 * [-10000, +10000].
 *
 * ERROR MESSAGES:
 *
 * log singularity:  x = 0; returns -INFINITY
 * log domain:       x < 0; returns NAN
 */

#include "libm.h"

#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double log2l(long double x)
{
	return log2(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 * 1/sqrt(2) <= x < sqrt(2)
 * Theoretical peak relative error = 6.2e-22
 */
static long double P[] = {
 4.9962495940332550844739E-1L,
 1.0767376367209449010438E1L,
 7.7671073698359539859595E1L,
 2.5620629828144409632571E2L,
 4.2401812743503691187826E2L,
 3.4258224542413922935104E2L,
 1.0747524399916215149070E2L,
};
static long double Q[] = {
/* 1.0000000000000000000000E0,*/
 2.3479774160285863271658E1L,
 1.9444210022760132894510E2L,
 7.7952888181207260646090E2L,
 1.6911722418503949084863E3L,
 2.0307734695595183428202E3L,
 1.2695660352705325274404E3L,
 3.2242573199748645407652E2L,
};

/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
 * where z = 2(x-1)/(x+1)
 * 1/sqrt(2) <= x < sqrt(2)
 * Theoretical peak relative error = 6.16e-22
 */
static long double R[4] = {
 1.9757429581415468984296E-3L,
-7.1990767473014147232598E-1L,
 1.0777257190312272158094E1L,
-3.5717684488096787370998E1L,
};
static long double S[4] = {
/* 1.00000000000000000000E0L,*/
-2.6201045551331104417768E1L,
 1.9361891836232102174846E2L,
-4.2861221385716144629696E2L,
};
/* log2(e) - 1 */
#define LOG2EA 4.4269504088896340735992e-1L

#define SQRTH 0.70710678118654752440L

long double log2l(long double x)
{
	volatile long double z;
	long double y;
	int e;

	if (isnan(x))
		return x;
	if (x == INFINITY)
		return x;
	if (x <= 0.0L) {
		if (x == 0.0L)
			return -INFINITY;
		return NAN;
	}

	/* separate mantissa from exponent */
	/* Note, frexp is used so that denormal numbers
	 * will be handled properly.
	 */
	x = frexpl(x, &e);

	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
	 * where z = 2(x-1)/x+1)
	 */
	if (e > 2 || e < -2) {
		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
			e -= 1;
			z = x - 0.5L;
			y = 0.5L * z + 0.5L;
		} else {  /*  2 (x-1)/(x+1)   */
			z = x - 0.5L;
			z -= 0.5L;
			y = 0.5L * x  + 0.5L;
		}
		x = z / y;
		z = x*x;
		y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
		goto done;
	}

	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
	if (x < SQRTH) {
		e -= 1;
		x = ldexpl(x, 1) - 1.0L; /*  2x - 1  */
	} else {
		x = x - 1.0L;
	}
	z = x*x;
	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
	y = y - ldexpl(z, -1);   /* -0.5x^2 + ... */

done:
	/* Multiply log of fraction by log2(e)
	 * and base 2 exponent by 1
	 *
	 * ***CAUTION***
	 *
	 * This sequence of operations is critical and it may
	 * be horribly defeated by some compiler optimizers.
	 */
	z = y * LOG2EA;
	z += x * LOG2EA;
	z += y;
	z += x;
	z += e;
	return z;
}
#endif