png.c 88.0 KB
Newer Older
G
Guy Schalnat 已提交
1

2 3
/* png.c - location for general purpose libpng functions
 *
4
 * Last changed in libpng 1.5.5 [(PENDING RELEASE)]
5
 * Copyright (c) 1998-2011 Glenn Randers-Pehrson
6 7
 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
8
 *
9
 * This code is released under the libpng license.
10
 * For conditions of distribution and use, see the disclaimer
11
 * and license in png.h
12
 */
G
Guy Schalnat 已提交
13

14
#include "pngpriv.h"
G
Guy Schalnat 已提交
15

16
/* Generate a compiler error if there is an old png.h in the search path. */
17
typedef png_libpng_version_1_5_6beta01 Your_png_h_is_not_version_1_5_6beta01;
18

A
Andreas Dilger 已提交
19 20 21 22 23
/* Tells libpng that we have already handled the first "num_bytes" bytes
 * of the PNG file signature.  If the PNG data is embedded into another
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
 * or write any of the magic bytes before it starts on the IHDR.
 */
24

25
#ifdef PNG_READ_SUPPORTED
26
void PNGAPI
A
Andreas Dilger 已提交
27 28
png_set_sig_bytes(png_structp png_ptr, int num_bytes)
{
29 30
   png_debug(1, "in png_set_sig_bytes");

31 32
   if (png_ptr == NULL)
      return;
33

A
Andreas Dilger 已提交
34
   if (num_bytes > 8)
35
      png_error(png_ptr, "Too many bytes for PNG signature");
A
Andreas Dilger 已提交
36

37
   png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
A
Andreas Dilger 已提交
38 39 40 41 42 43 44 45
}

/* Checks whether the supplied bytes match the PNG signature.  We allow
 * checking less than the full 8-byte signature so that those apps that
 * already read the first few bytes of a file to determine the file type
 * can simply check the remaining bytes for extra assurance.  Returns
 * an integer less than, equal to, or greater than zero if sig is found,
 * respectively, to be less than, to match, or be greater than the correct
46
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
A
Andreas Dilger 已提交
47
 */
48
int PNGAPI
49
png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
G
Guy Schalnat 已提交
50
{
51
   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
52

A
Andreas Dilger 已提交
53 54
   if (num_to_check > 8)
      num_to_check = 8;
55

A
Andreas Dilger 已提交
56
   else if (num_to_check < 1)
57
      return (-1);
A
Andreas Dilger 已提交
58

A
Andreas Dilger 已提交
59
   if (start > 7)
60
      return (-1);
G
Guy Schalnat 已提交
61

A
Andreas Dilger 已提交
62 63 64
   if (start + num_to_check > 8)
      num_to_check = 8 - start;

65
   return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
A
Andreas Dilger 已提交
66 67
}

68
#endif /* PNG_READ_SUPPORTED */
G
Guy Schalnat 已提交
69

70
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
71
/* Function to allocate memory for zlib */
72 73
PNG_FUNCTION(voidpf /* PRIVATE */,
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
G
Guy Schalnat 已提交
74
{
75 76 77
   png_voidp ptr;
   png_structp p=(png_structp)png_ptr;
   png_uint_32 save_flags=p->flags;
78
   png_alloc_size_t num_bytes;
79

80 81
   if (png_ptr == NULL)
      return (NULL);
82

83 84
   if (items > PNG_UINT_32_MAX/size)
   {
85 86
     png_warning (p, "Potential overflow in png_zalloc()");
     return (NULL);
87
   }
88
   num_bytes = (png_alloc_size_t)items * size;
G
Guy Schalnat 已提交
89

90 91 92
   p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
   ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
   p->flags=save_flags;
G
Guy Schalnat 已提交
93

94 95 96
   return ((voidpf)ptr);
}

97
/* Function to free memory for zlib */
98
void /* PRIVATE */
G
Guy Schalnat 已提交
99
png_zfree(voidpf png_ptr, voidpf ptr)
G
Guy Schalnat 已提交
100
{
A
Andreas Dilger 已提交
101
   png_free((png_structp)png_ptr, (png_voidp)ptr);
G
Guy Schalnat 已提交
102 103
}

A
Andreas Dilger 已提交
104
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
105 106
 * in case CRC is > 32 bits to leave the top bits 0.
 */
107
void /* PRIVATE */
G
Guy Schalnat 已提交
108
png_reset_crc(png_structp png_ptr)
G
Guy Schalnat 已提交
109
{
110 111
   /* The cast is safe because the crc is a 32 bit value. */
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
G
Guy Schalnat 已提交
112 113
}

A
Andreas Dilger 已提交
114
/* Calculate the CRC over a section of data.  We can only pass as
115 116 117 118
 * much data to this routine as the largest single buffer size.  We
 * also check that this data will actually be used before going to the
 * trouble of calculating it.
 */
119
void /* PRIVATE */
120
png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
G
Guy Schalnat 已提交
121
{
A
Andreas Dilger 已提交
122 123 124 125 126 127 128 129
   int need_crc = 1;

   if (png_ptr->chunk_name[0] & 0x20)                     /* ancillary */
   {
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
         need_crc = 0;
   }
130

A
Andreas Dilger 已提交
131 132 133 134 135 136
   else                                                    /* critical */
   {
      if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
         need_crc = 0;
   }

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
   /* 'uLong' is defined as unsigned long, this means that on some systems it is
    * a 64 bit value.  crc32, however, returns 32 bits so the following cast is
    * safe.  'uInt' may be no more than 16 bits, so it is necessary to perform a
    * loop here.
    */
   if (need_crc && length > 0)
   {
      uLong crc = png_ptr->crc; /* Should never issue a warning */

      do
      {
         uInt safeLength = (uInt)length;
         if (safeLength == 0)
            safeLength = (uInt)-1; /* evil, but safe */

         crc = crc32(crc, ptr, safeLength);

         /* The following should never issue compiler warnings, if they do the
          * target system has characteristics that will probably violate other
          * assumptions within the libpng code.
          */
         ptr += safeLength;
         length -= safeLength;
      }
      while (length > 0);

      /* And the following is always safe because the crc is only 32 bits. */
      png_ptr->crc = (png_uint_32)crc;
   }
G
Guy Schalnat 已提交
166
}
G
Guy Schalnat 已提交
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* Check a user supplied version number, called from both read and write
 * functions that create a png_struct
 */
int
png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
{
   if (user_png_ver)
   {
      int i = 0;

      do
      {
         if (user_png_ver[i] != png_libpng_ver[i])
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
      } while (png_libpng_ver[i++]);
   }

   else
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;

   if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
   {
     /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
      * we must recompile any applications that use any older library version.
      * For versions after libpng 1.0, we will be compatible, so we need
      * only check the first digit.
      */
      if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
          (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
          (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
      {
#ifdef PNG_WARNINGS_SUPPORTED
         size_t pos = 0;
         char m[128];

         pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
         pos = png_safecat(m, sizeof m, pos, user_png_ver);
         pos = png_safecat(m, sizeof m, pos, " but running with ");
         pos = png_safecat(m, sizeof m, pos, png_libpng_ver);

         png_warning(png_ptr, m);
#endif

#ifdef PNG_ERROR_NUMBERS_SUPPORTED
         png_ptr->flags = 0;
#endif

         return 0;
      }
   }

   /* Success return. */
   return 1;
}

A
Andreas Dilger 已提交
223
/* Allocate the memory for an info_struct for the application.  We don't
224
 * really need the png_ptr, but it could potentially be useful in the
225
 * future.  This should be used in favour of malloc(png_sizeof(png_info))
226 227 228
 * and png_info_init() so that applications that want to use a shared
 * libpng don't have to be recompiled if png_info changes size.
 */
229 230
PNG_FUNCTION(png_infop,PNGAPI
png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
G
Guy Schalnat 已提交
231 232 233
{
   png_infop info_ptr;

234
   png_debug(1, "in png_create_info_struct");
235

236 237
   if (png_ptr == NULL)
      return (NULL);
238

239
#ifdef PNG_USER_MEM_SUPPORTED
240 241
   info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
      png_ptr->malloc_fn, png_ptr->mem_ptr);
242
#else
243
   info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
244
#endif
245
   if (info_ptr != NULL)
246
      png_info_init_3(&info_ptr, png_sizeof(png_info));
G
Guy Schalnat 已提交
247

248
   return (info_ptr);
G
Guy Schalnat 已提交
249 250
}

A
Andreas Dilger 已提交
251
/* This function frees the memory associated with a single info struct.
252 253 254 255
 * Normally, one would use either png_destroy_read_struct() or
 * png_destroy_write_struct() to free an info struct, but this may be
 * useful for some applications.
 */
256
void PNGAPI
A
Andreas Dilger 已提交
257 258 259 260
png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
{
   png_infop info_ptr = NULL;

261
   png_debug(1, "in png_destroy_info_struct");
262

263 264 265
   if (png_ptr == NULL)
      return;

A
Andreas Dilger 已提交
266
   if (info_ptr_ptr != NULL)
A
Andreas Dilger 已提交
267 268
      info_ptr = *info_ptr_ptr;

A
Andreas Dilger 已提交
269
   if (info_ptr != NULL)
A
Andreas Dilger 已提交
270 271 272
   {
      png_info_destroy(png_ptr, info_ptr);

273
#ifdef PNG_USER_MEM_SUPPORTED
274 275
      png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
          png_ptr->mem_ptr);
276
#else
A
Andreas Dilger 已提交
277
      png_destroy_struct((png_voidp)info_ptr);
278
#endif
279
      *info_ptr_ptr = NULL;
A
Andreas Dilger 已提交
280 281 282 283
   }
}

/* Initialize the info structure.  This is now an internal function (0.89)
284 285 286
 * and applications using it are urged to use png_create_info_struct()
 * instead.
 */
287

288 289 290 291 292
void PNGAPI
png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
{
   png_infop info_ptr = *ptr_ptr;

293 294
   png_debug(1, "in png_info_init_3");

295 296
   if (info_ptr == NULL)
      return;
297

298
   if (png_sizeof(png_info) > png_info_struct_size)
299 300 301 302 303
   {
      png_destroy_struct(info_ptr);
      info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
      *ptr_ptr = info_ptr;
   }
304

305
   /* Set everything to 0 */
306
   png_memset(info_ptr, 0, png_sizeof(png_info));
A
Andreas Dilger 已提交
307 308
}

309
void PNGAPI
310 311 312
png_data_freer(png_structp png_ptr, png_infop info_ptr,
   int freer, png_uint_32 mask)
{
313
   png_debug(1, "in png_data_freer");
314

315 316
   if (png_ptr == NULL || info_ptr == NULL)
      return;
317

318
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
319
      info_ptr->free_me |= mask;
320

321
   else if (freer == PNG_USER_WILL_FREE_DATA)
322
      info_ptr->free_me &= ~mask;
323

324 325
   else
      png_warning(png_ptr,
326
         "Unknown freer parameter in png_data_freer");
327 328
}

329
void PNGAPI
330 331
png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
   int num)
332
{
333
   png_debug(1, "in png_free_data");
334

335 336
   if (png_ptr == NULL || info_ptr == NULL)
      return;
337

338
#ifdef PNG_TEXT_SUPPORTED
339
   /* Free text item num or (if num == -1) all text items */
340
   if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
341
   {
342 343 344 345 346 347 348 349
      if (num != -1)
      {
         if (info_ptr->text && info_ptr->text[num].key)
         {
            png_free(png_ptr, info_ptr->text[num].key);
            info_ptr->text[num].key = NULL;
         }
      }
350

351 352 353 354 355 356 357 358 359
      else
      {
         int i;
         for (i = 0; i < info_ptr->num_text; i++)
             png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
         png_free(png_ptr, info_ptr->text);
         info_ptr->text = NULL;
         info_ptr->num_text=0;
      }
360 361 362
   }
#endif

363
#ifdef PNG_tRNS_SUPPORTED
364
   /* Free any tRNS entry */
365 366
   if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
   {
367 368
      png_free(png_ptr, info_ptr->trans_alpha);
      info_ptr->trans_alpha = NULL;
369 370
      info_ptr->valid &= ~PNG_INFO_tRNS;
   }
371 372
#endif

373
#ifdef PNG_sCAL_SUPPORTED
374
   /* Free any sCAL entry */
375 376 377 378 379 380 381 382
   if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->scal_s_width);
      png_free(png_ptr, info_ptr->scal_s_height);
      info_ptr->scal_s_width = NULL;
      info_ptr->scal_s_height = NULL;
      info_ptr->valid &= ~PNG_INFO_sCAL;
   }
383 384
#endif

385
#ifdef PNG_pCAL_SUPPORTED
386
   /* Free any pCAL entry */
387 388 389 390 391 392 393 394 395 396 397 398
   if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->pcal_purpose);
      png_free(png_ptr, info_ptr->pcal_units);
      info_ptr->pcal_purpose = NULL;
      info_ptr->pcal_units = NULL;
      if (info_ptr->pcal_params != NULL)
         {
            int i;
            for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
            {
               png_free(png_ptr, info_ptr->pcal_params[i]);
399
               info_ptr->pcal_params[i] = NULL;
400 401 402 403 404 405
            }
            png_free(png_ptr, info_ptr->pcal_params);
            info_ptr->pcal_params = NULL;
         }
      info_ptr->valid &= ~PNG_INFO_pCAL;
   }
406 407
#endif

408
#ifdef PNG_iCCP_SUPPORTED
409
   /* Free any iCCP entry */
410 411 412 413 414 415 416 417
   if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->iccp_name);
      png_free(png_ptr, info_ptr->iccp_profile);
      info_ptr->iccp_name = NULL;
      info_ptr->iccp_profile = NULL;
      info_ptr->valid &= ~PNG_INFO_iCCP;
   }
418 419
#endif

420
#ifdef PNG_sPLT_SUPPORTED
421
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
422
   if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
423
   {
424
      if (num != -1)
425
      {
426 427 428 429 430 431 432 433
         if (info_ptr->splt_palettes)
         {
            png_free(png_ptr, info_ptr->splt_palettes[num].name);
            png_free(png_ptr, info_ptr->splt_palettes[num].entries);
            info_ptr->splt_palettes[num].name = NULL;
            info_ptr->splt_palettes[num].entries = NULL;
         }
      }
434

435 436 437 438 439 440 441 442 443 444 445 446 447
      else
      {
         if (info_ptr->splt_palettes_num)
         {
            int i;
            for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
               png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);

            png_free(png_ptr, info_ptr->splt_palettes);
            info_ptr->splt_palettes = NULL;
            info_ptr->splt_palettes_num = 0;
         }
         info_ptr->valid &= ~PNG_INFO_sPLT;
448
      }
449 450 451
   }
#endif

452
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
453 454 455 456 457
   if (png_ptr->unknown_chunk.data)
   {
      png_free(png_ptr, png_ptr->unknown_chunk.data);
      png_ptr->unknown_chunk.data = NULL;
   }
458

459
   if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
460
   {
461 462 463 464 465 466 467 468
      if (num != -1)
      {
          if (info_ptr->unknown_chunks)
          {
             png_free(png_ptr, info_ptr->unknown_chunks[num].data);
             info_ptr->unknown_chunks[num].data = NULL;
          }
      }
469

470 471 472
      else
      {
         int i;
473

474 475
         if (info_ptr->unknown_chunks_num)
         {
476
            for (i = 0; i < info_ptr->unknown_chunks_num; i++)
477
               png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
478

479 480 481 482 483
            png_free(png_ptr, info_ptr->unknown_chunks);
            info_ptr->unknown_chunks = NULL;
            info_ptr->unknown_chunks_num = 0;
         }
      }
484 485 486
   }
#endif

487
#ifdef PNG_hIST_SUPPORTED
488
   /* Free any hIST entry */
489 490 491 492 493 494
   if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
   {
      png_free(png_ptr, info_ptr->hist);
      info_ptr->hist = NULL;
      info_ptr->valid &= ~PNG_INFO_hIST;
   }
495 496
#endif

497
   /* Free any PLTE entry that was internally allocated */
498 499 500 501 502 503 504
   if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
   {
      png_zfree(png_ptr, info_ptr->palette);
      info_ptr->palette = NULL;
      info_ptr->valid &= ~PNG_INFO_PLTE;
      info_ptr->num_palette = 0;
   }
505

506
#ifdef PNG_INFO_IMAGE_SUPPORTED
507
   /* Free any image bits attached to the info structure */
508 509 510 511 512 513 514 515
   if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
   {
      if (info_ptr->row_pointers)
      {
         int row;
         for (row = 0; row < (int)info_ptr->height; row++)
         {
            png_free(png_ptr, info_ptr->row_pointers[row]);
516
            info_ptr->row_pointers[row] = NULL;
517 518
         }
         png_free(png_ptr, info_ptr->row_pointers);
519
         info_ptr->row_pointers = NULL;
520 521 522
      }
      info_ptr->valid &= ~PNG_INFO_IDAT;
   }
523
#endif
524

525 526
   if (num != -1)
      mask &= ~PNG_FREE_MUL;
527

528
   info_ptr->free_me &= ~mask;
529
}
530

A
Andreas Dilger 已提交
531
/* This is an internal routine to free any memory that the info struct is
A
Andreas Dilger 已提交
532 533 534
 * pointing to before re-using it or freeing the struct itself.  Recall
 * that png_free() checks for NULL pointers for us.
 */
535
void /* PRIVATE */
A
Andreas Dilger 已提交
536 537
png_info_destroy(png_structp png_ptr, png_infop info_ptr)
{
538
   png_debug(1, "in png_info_destroy");
539 540

   png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
541

542
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
543 544
   if (png_ptr->num_chunk_list)
   {
545
      png_free(png_ptr, png_ptr->chunk_list);
546
      png_ptr->chunk_list = NULL;
547
      png_ptr->num_chunk_list = 0;
548
   }
A
Andreas Dilger 已提交
549
#endif
550

551
   png_info_init_3(&info_ptr, png_sizeof(png_info));
G
Guy Schalnat 已提交
552
}
553
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
G
Guy Schalnat 已提交
554

G
Guy Schalnat 已提交
555
/* This function returns a pointer to the io_ptr associated with the user
556 557 558
 * functions.  The application should free any memory associated with this
 * pointer before png_write_destroy() or png_read_destroy() are called.
 */
559
png_voidp PNGAPI
G
Guy Schalnat 已提交
560 561
png_get_io_ptr(png_structp png_ptr)
{
562 563
   if (png_ptr == NULL)
      return (NULL);
564

565
   return (png_ptr->io_ptr);
G
Guy Schalnat 已提交
566
}
A
Andreas Dilger 已提交
567

568
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
569
#  ifdef PNG_STDIO_SUPPORTED
A
Andreas Dilger 已提交
570
/* Initialize the default input/output functions for the PNG file.  If you
571
 * use your own read or write routines, you can call either png_set_read_fn()
572
 * or png_set_write_fn() instead of png_init_io().  If you have defined
573 574
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
 * function of your own because "FILE *" isn't necessarily available.
575
 */
576
void PNGAPI
577
png_init_io(png_structp png_ptr, png_FILE_p fp)
G
Guy Schalnat 已提交
578
{
579
   png_debug(1, "in png_init_io");
580

581 582
   if (png_ptr == NULL)
      return;
583

G
Guy Schalnat 已提交
584 585
   png_ptr->io_ptr = (png_voidp)fp;
}
586
#  endif
587

588
#  ifdef PNG_TIME_RFC1123_SUPPORTED
589 590 591
/* Convert the supplied time into an RFC 1123 string suitable for use in
 * a "Creation Time" or other text-based time string.
 */
592 593
png_const_charp PNGAPI
png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
594 595
{
   static PNG_CONST char short_months[12][4] =
596 597
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
598

599 600
   if (png_ptr == NULL)
      return (NULL);
601

602
   {
603 604 605 606 607 608 609 610 611 612 613
      size_t pos = 0;
      char number_buf[5]; /* enough for a four digit year */

#     define APPEND_STRING(string)\
         pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
            pos, (string))
#     define APPEND_NUMBER(format, value)\
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
#     define APPEND(ch)\
         if (pos < (sizeof png_ptr->time_buffer)-1)\
            png_ptr->time_buffer[pos++] = (ch)
614

615
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day % 32);
616 617 618 619 620
      APPEND(' ');
      APPEND_STRING(short_months[(ptime->month - 1) % 12]);
      APPEND(' ');
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
      APPEND(' ');
621
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour % 24);
622
      APPEND(':');
623
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute % 60);
624
      APPEND(':');
625
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second % 61);
626 627 628 629 630
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */

#     undef APPEND
#     undef APPEND_NUMBER
#     undef APPEND_STRING
631
   }
632

633
   return png_ptr->time_buffer;
634
}
635
#  endif /* PNG_TIME_RFC1123_SUPPORTED */
636

637
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
638

639
png_const_charp PNGAPI
640
png_get_copyright(png_const_structp png_ptr)
641
{
642
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
643
#ifdef PNG_STRING_COPYRIGHT
644
   return PNG_STRING_COPYRIGHT
645
#else
646
#  ifdef __STDC__
647
   return PNG_STRING_NEWLINE \
648
     "libpng version 1.5.6beta01 - September 22, 2011" PNG_STRING_NEWLINE \
649
     "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
650 651
     "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
     "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
652
     PNG_STRING_NEWLINE;
653
#  else
654
      return "libpng version 1.5.6beta01 - September 22, 2011\
655
      Copyright (c) 1998-2011 Glenn Randers-Pehrson\
656
      Copyright (c) 1996-1997 Andreas Dilger\
657
      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
658
#  endif
659
#endif
660
}
661

662
/* The following return the library version as a short string in the
663 664 665 666 667 668
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
 * is defined in png.h.
 * Note: now there is no difference between png_get_libpng_ver() and
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
 * it is guaranteed that png.c uses the correct version of png.h.
669
 */
670
png_const_charp PNGAPI
671
png_get_libpng_ver(png_const_structp png_ptr)
672 673
{
   /* Version of *.c files used when building libpng */
674
   return png_get_header_ver(png_ptr);
675 676
}

677
png_const_charp PNGAPI
678
png_get_header_ver(png_const_structp png_ptr)
679 680
{
   /* Version of *.h files used when building libpng */
681
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
682
   return PNG_LIBPNG_VER_STRING;
683 684
}

685
png_const_charp PNGAPI
686
png_get_header_version(png_const_structp png_ptr)
687 688
{
   /* Returns longer string containing both version and date */
689
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
690
#ifdef __STDC__
691
   return PNG_HEADER_VERSION_STRING
692
#  ifndef PNG_READ_SUPPORTED
693
   "     (NO READ SUPPORT)"
694
#  endif
695
   PNG_STRING_NEWLINE;
696
#else
697
   return PNG_HEADER_VERSION_STRING;
698
#endif
699 700
}

701
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
702
#  ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
703
int PNGAPI
G
[devel]  
Glenn Randers-Pehrson 已提交
704
png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
705
{
706
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
707 708
   int i;
   png_bytep p;
709
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0)
710
      return 0;
711

712 713
   p = png_ptr->chunk_list + png_ptr->num_chunk_list*5 - 5;
   for (i = png_ptr->num_chunk_list; i; i--, p -= 5)
714
      if (!png_memcmp(chunk_name, p, 4))
715
        return ((int)*(p + 4));
716 717
   return 0;
}
718
#  endif
719
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
720

721
#ifdef PNG_READ_SUPPORTED
722
/* This function, added to libpng-1.0.6g, is untested. */
723
int PNGAPI
724 725
png_reset_zstream(png_structp png_ptr)
{
726 727
   if (png_ptr == NULL)
      return Z_STREAM_ERROR;
728

729 730
   return (inflateReset(&png_ptr->zstream));
}
731
#endif /* PNG_READ_SUPPORTED */
732

733
/* This function was added to libpng-1.0.7 */
734 735 736 737
png_uint_32 PNGAPI
png_access_version_number(void)
{
   /* Version of *.c files used when building libpng */
738
   return((png_uint_32)PNG_LIBPNG_VER);
739 740 741
}


742

743
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
744 745 746
/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
 * at libpng 1.5.5!
 */
747

748
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
G
[devel]  
Glenn Randers-Pehrson 已提交
749
#  ifdef PNG_CHECK_cHRM_SUPPORTED
750

751
int /* PRIVATE */
752 753 754 755 756 757
png_check_cHRM_fixed(png_structp png_ptr,
   png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
   png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
   png_fixed_point blue_x, png_fixed_point blue_y)
{
   int ret = 1;
758
   unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
759 760

   png_debug(1, "in function png_check_cHRM_fixed");
761

762 763 764
   if (png_ptr == NULL)
      return 0;

765 766 767 768 769 770 771
   /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
    * y must also be greater than 0.  To test for the upper limit calculate
    * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
    * cannot overflow.)  At this point we know x and y are >= 0 and (x+y) is
    * <= PNG_FP_1.  The previous test on PNG_MAX_UINT_31 is removed because it
    * pointless (and it produces compiler warnings!)
    */
772 773 774 775
   if (white_x < 0 || white_y <= 0 ||
         red_x < 0 ||   red_y <  0 ||
       green_x < 0 || green_y <  0 ||
        blue_x < 0 ||  blue_y <  0)
776 777 778 779 780
   {
      png_warning(png_ptr,
        "Ignoring attempt to set negative chromaticity value");
      ret = 0;
   }
781 782
   /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
   if (white_x > PNG_FP_1 - white_y)
783 784 785 786
   {
      png_warning(png_ptr, "Invalid cHRM white point");
      ret = 0;
   }
787

788
   if (red_x > PNG_FP_1 - red_y)
789 790 791 792
   {
      png_warning(png_ptr, "Invalid cHRM red point");
      ret = 0;
   }
793

794
   if (green_x > PNG_FP_1 - green_y)
795 796 797 798
   {
      png_warning(png_ptr, "Invalid cHRM green point");
      ret = 0;
   }
799

800
   if (blue_x > PNG_FP_1 - blue_y)
801 802 803 804
   {
      png_warning(png_ptr, "Invalid cHRM blue point");
      ret = 0;
   }
805 806 807 808 809 810 811 812 813 814 815

   png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
   png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);

   if (xy_hi == yx_hi && xy_lo == yx_lo)
   {
      png_warning(png_ptr,
         "Ignoring attempt to set cHRM RGB triangle with zero area");
      ret = 0;
   }

816 817
   return ret;
}
G
[devel]  
Glenn Randers-Pehrson 已提交
818
#  endif /* PNG_CHECK_cHRM_SUPPORTED */
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifdef PNG_cHRM_SUPPORTED
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
 * cHRM, as opposed to using chromaticities.  These internal APIs return
 * non-zero on a parameter error.  The X, Y and Z values are required to be
 * positive and less than 1.0.
 */
int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
{
   png_int_32 d, dwhite, whiteX, whiteY;

   d = XYZ.redX + XYZ.redY + XYZ.redZ;
   if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
   dwhite = d;
   whiteX = XYZ.redX;
   whiteY = XYZ.redY;

   d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
   if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
   dwhite += d;
   whiteX += XYZ.greenX;
   whiteY += XYZ.greenY;

   d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
   if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
   if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
   dwhite += d;
   whiteX += XYZ.blueX;
   whiteY += XYZ.blueY;

   /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
    * thus:
    */
   if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
   if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;

   return 0;
}

int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
{
   png_fixed_point red_inverse, green_inverse, blue_scale;
   png_fixed_point left, right, denominator;

   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
    * have end points with 0 tristimulus values (these are impossible end
    * points, but they are used to cover the possible colors.)
    */
   if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
   if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
   if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
   if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
   if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
   if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
   if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
   if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;

   /* The reverse calculation is more difficult because the original tristimulus
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
    * derived values were recorded in the cHRM chunk;
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
    * therefore an arbitrary ninth value has to be introduced to undo the
    * original transformations.
    *
    * Think of the original end-points as points in (X,Y,Z) space.  The
    * chromaticity values (c) have the property:
    *
    *           C
    *   c = ---------
    *       X + Y + Z
    *
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
    * three chromaticity values (x,y,z) for each end-point obey the
    * relationship:
    *
    *   x + y + z = 1
    *
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
    * and chromaticity is the intersection of the vector from the origin to the
    * (X,Y,Z) value with the chromaticity plane.
    *
    * To fully invert the chromaticity calculation we would need the three
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
    * given all three of the scale factors since:
    *
    *    color-C = color-c * color-scale
    *    white-C = red-C + green-C + blue-C
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
    *
    * But cHRM records only white-x and white-y, so we have lost the white scale
    * factor:
    *
    *    white-C = white-c*white-scale
    *
    * To handle this the inverse transformation makes an arbitrary assumption
    * about white-scale:
    *
    *    Assume: white-Y = 1.0
    *    Hence:  white-scale = 1/white-y
    *    Or:     red-Y + green-Y + blue-Y = 1.0
    *
    * Notice the last statement of the assumption gives an equation in three of
    * the nine values we want to calculate.  8 more equations come from the
    * above routine as summarised at the top above (the chromaticity
    * calculation):
    *
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
    *
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
    * determinants, however this is not as bad as it seems because only 28 of
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
    * Cramer's rule is notoriously numerically unstable because the determinant
    * calculation involves the difference of large, but similar, numbers.  It is
    * difficult to be sure that the calculation is stable for real world values
    * and it is certain that it becomes unstable where the end points are close
    * together.
    *
    * So this code uses the perhaps slighly less optimal but more understandable
    * and totally obvious approach of calculating color-scale.
    *
    * This algorithm depends on the precision in white-scale and that is
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
    * accuracy inherent in the cHRM chunk drops off substantially.
    *
    * libpng arithmetic: a simple invertion of the above equations
    * ------------------------------------------------------------
    *
    *    white_scale = 1/white-y
    *    white-X = white-x * white-scale
    *    white-Y = 1.0
    *    white-Z = (1 - white-x - white-y) * white_scale
    *
    *    white-C = red-C + green-C + blue-C
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
    *
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
    * all the coefficients are now known:
    *
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
    *       = white-x/white-y
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
    *       = (1 - white-x - white-y)/white-y
    *
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
    * three equations together to get an alternative third:
    *
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
    *
    * So now we have a Cramer's rule solution where the determinants are just
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
    * multiplication of three coefficients so we can't guarantee to avoid
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
    * floating point is probably a good choice here, but it's not an option for
    * fixed point.  Instead proceed to simplify the first two equations by
    * eliminating what is likely to be the largest value, blue-scale:
    *
    *    blue-scale = white-scale - red-scale - green-scale
    *
    * Hence:
    *
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
    *                (white-x - blue-x)*white-scale
    *
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
    *                1 - blue-y*white-scale
    *
    * And now we can trivially solve for (red-scale,green-scale):
    *
    *    green-scale =
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
    *                -----------------------------------------------------------
    *                                  green-x - blue-x
    *
    *    red-scale =
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
    *                ---------------------------------------------------------
    *                                  red-y - blue-y
    *
    * Hence:
    *
    *    red-scale =
    *          ( (green-x - blue-x) * (white-y - blue-y) -
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
    * -------------------------------------------------------------------------
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
    *
    *    green-scale =
    *          ( (red-y - blue-y) * (white-x - blue-x) -
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
    * -------------------------------------------------------------------------
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
    *
    * Accuracy:
    * The input values have 5 decimal digits of accuracy.  The values are all in
    * the range 0 < value < 1, so simple products are in the same range but may
    * need up to 10 decimal digits to preserve the original precision and avoid
    * underflow.  Because we are using a 32-bit signed representation we cannot
    * match this; the best is a little over 9 decimal digits, less than 10.
    *
    * The approach used here is to preserve the maximum precision within the
    * signed representation.  Because the red-scale calculation above uses the
    * difference between two products of values that must be in the range -1..+1
    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
    * factor is irrelevant in the calculation because it is applied to both
    * numerator and denominator.
    *
    * Note that the values of the differences of the products of the
    * chromaticities in the above equations tend to be small, for example for
    * the sRGB chromaticities they are:
    *
    * red numerator:    -0.04751
    * green numerator:  -0.08788
    * denominator:      -0.2241 (without white-y multiplication)
    *
    *  The resultant Y coefficients from the chromaticities of some widely used
    *  color space definitions are (to 15 decimal places):
    *
    *  sRGB
    *    0.212639005871510 0.715168678767756 0.072192315360734
    *  Kodak ProPhoto
    *    0.288071128229293 0.711843217810102 0.000085653960605
    *  Adobe RGB
    *    0.297344975250536 0.627363566255466 0.075291458493998
    *  Adobe Wide Gamut RGB
    *    0.258728243040113 0.724682314948566 0.016589442011321
    */
   /* By the argument, above overflow should be impossible here. The return
    * value of 2 indicates an internal error to the caller.
    */
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
   denominator = left - right;

   /* Now find the red numerator. */
   if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
   if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;

   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
    * chunk values.  This calculation actually returns the reciprocal of the
    * scale value because this allows us to delay the multiplication of white-y
    * into the denominator, which tends to produce a small number.
    */
   if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
       red_inverse <= xy.whitey /* r+g+b scales = white scale */)
      return 1;

   /* Similarly for green_inverse: */
   if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
   if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
   if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
       green_inverse <= xy.whitey)
      return 1;

   /* And the blue scale, the checks above guarantee this can't overflow but it
    * can still produce 0 for extreme cHRM values.
    */
   blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
      png_reciprocal(green_inverse);
   if (blue_scale <= 0) return 1;


   /* And fill in the png_XYZ: */
   if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
   if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
   if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
      red_inverse))
      return 1;

   if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
   if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
   if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
      green_inverse))
      return 1;

   if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
   if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
   if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
      PNG_FP_1))
      return 1;

   return 0; /*success*/
}

int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
{
   switch (png_XYZ_from_xy(XYZ, xy))
   {
      case 0: /* success */
         return 1;

      case 1:
         /* The chunk may be technically valid, but we got png_fixed_point
          * overflow while trying to get XYZ values out of it.  This is
          * entirely benign - the cHRM chunk is pretty extreme.
          */
1123
         png_warning(png_ptr,
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            "extreme cHRM chunk cannot be converted to tristimulus values");
         break;

      default:
         /* libpng is broken; this should be a warning but if it happens we
          * want error reports so for the moment it is an error.
          */
         png_error(png_ptr, "internal error in png_XYZ_from_xy");
         break;
   }

   /* ERROR RETURN */
   return 0;
}
#endif

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
void /* PRIVATE */
png_check_IHDR(png_structp png_ptr,
   png_uint_32 width, png_uint_32 height, int bit_depth,
   int color_type, int interlace_type, int compression_type,
   int filter_type)
{
   int error = 0;

   /* Check for width and height valid values */
   if (width == 0)
   {
      png_warning(png_ptr, "Image width is zero in IHDR");
      error = 1;
   }

   if (height == 0)
   {
      png_warning(png_ptr, "Image height is zero in IHDR");
      error = 1;
   }

1161
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
1162
   if (width > png_ptr->user_width_max)
1163

1164
#  else
1165
   if (width > PNG_USER_WIDTH_MAX)
1166
#  endif
1167 1168 1169 1170 1171
   {
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
      error = 1;
   }

1172
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
1173
   if (height > png_ptr->user_height_max)
1174
#  else
1175
   if (height > PNG_USER_HEIGHT_MAX)
1176
#  endif
1177 1178 1179 1180 1181
   {
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
      error = 1;
   }

1182
   if (width > PNG_UINT_31_MAX)
1183
   {
1184
      png_warning(png_ptr, "Invalid image width in IHDR");
1185 1186 1187
      error = 1;
   }

1188
   if (height > PNG_UINT_31_MAX)
1189
   {
1190
      png_warning(png_ptr, "Invalid image height in IHDR");
1191 1192 1193
      error = 1;
   }

1194
   if (width > (PNG_UINT_32_MAX
1195
                 >> 3)      /* 8-byte RGBA pixels */
1196
                 - 48       /* bigrowbuf hack */
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
                 - 1        /* filter byte */
                 - 7*8      /* rounding of width to multiple of 8 pixels */
                 - 8)       /* extra max_pixel_depth pad */
      png_warning(png_ptr, "Width is too large for libpng to process pixels");

   /* Check other values */
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
       bit_depth != 8 && bit_depth != 16)
   {
      png_warning(png_ptr, "Invalid bit depth in IHDR");
      error = 1;
   }

   if (color_type < 0 || color_type == 1 ||
       color_type == 5 || color_type > 6)
   {
      png_warning(png_ptr, "Invalid color type in IHDR");
      error = 1;
   }

   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
       ((color_type == PNG_COLOR_TYPE_RGB ||
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
   {
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
      error = 1;
   }

   if (interlace_type >= PNG_INTERLACE_LAST)
   {
      png_warning(png_ptr, "Unknown interlace method in IHDR");
      error = 1;
   }

   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
   {
      png_warning(png_ptr, "Unknown compression method in IHDR");
      error = 1;
   }

1238
#  ifdef PNG_MNG_FEATURES_SUPPORTED
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
   /* Accept filter_method 64 (intrapixel differencing) only if
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
    * 2. Libpng did not read a PNG signature (this filter_method is only
    *    used in PNG datastreams that are embedded in MNG datastreams) and
    * 3. The application called png_permit_mng_features with a mask that
    *    included PNG_FLAG_MNG_FILTER_64 and
    * 4. The filter_method is 64 and
    * 5. The color_type is RGB or RGBA
    */
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
       png_ptr->mng_features_permitted)
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");

   if (filter_type != PNG_FILTER_TYPE_BASE)
   {
1254
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
1255 1256 1257 1258
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
          (color_type == PNG_COLOR_TYPE_RGB ||
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
1259 1260 1261 1262
      {
         png_warning(png_ptr, "Unknown filter method in IHDR");
         error = 1;
      }
1263

1264 1265 1266 1267 1268 1269
      if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
      {
         png_warning(png_ptr, "Invalid filter method in IHDR");
         error = 1;
      }
   }
1270

1271
#  else
1272 1273 1274 1275 1276
   if (filter_type != PNG_FILTER_TYPE_BASE)
   {
      png_warning(png_ptr, "Unknown filter method in IHDR");
      error = 1;
   }
1277
#  endif
1278 1279 1280 1281

   if (error == 1)
      png_error(png_ptr, "Invalid IHDR data");
}
G
[devel]  
Glenn Randers-Pehrson 已提交
1282 1283 1284 1285 1286 1287

#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
/* ASCII to fp functions */
/* Check an ASCII formated floating point value, see the more detailed
 * comments in pngpriv.h
 */
1288
/* The following is used internally to preserve the sticky flags */
G
[devel]  
Glenn Randers-Pehrson 已提交
1289
#define png_fp_add(state, flags) ((state) |= (flags))
1290
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
G
[devel]  
Glenn Randers-Pehrson 已提交
1291 1292

int /* PRIVATE */
1293
png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
G
[devel]  
Glenn Randers-Pehrson 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
   png_size_tp whereami)
{
   int state = *statep;
   png_size_t i = *whereami;

   while (i < size)
   {
      int type;
      /* First find the type of the next character */
1303
      switch (string[i])
G
[devel]  
Glenn Randers-Pehrson 已提交
1304
      {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
      case 46:  type = PNG_FP_SAW_DOT;                    break;
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
      case 49: case 50: case 51: case 52:
      case 53: case 54: case 55: case 56:
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
      case 69:
      case 101: type = PNG_FP_SAW_E;                      break;
      default:  goto PNG_FP_End;
G
[devel]  
Glenn Randers-Pehrson 已提交
1315 1316 1317 1318 1319 1320
      }

      /* Now deal with this type according to the current
       * state, the type is arranged to not overlap the
       * bits of the PNG_FP_STATE.
       */
1321
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
G
[devel]  
Glenn Randers-Pehrson 已提交
1322
      {
1323
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
1324 1325
         if (state & PNG_FP_SAW_ANY)
            goto PNG_FP_End; /* not a part of the number */
1326

1327
         png_fp_add(state, type);
1328
         break;
1329

1330
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
1331 1332 1333
         /* Ok as trailer, ok as lead of fraction. */
         if (state & PNG_FP_SAW_DOT) /* two dots */
            goto PNG_FP_End;
1334

1335
         else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
1336
            png_fp_add(state, type);
1337

1338
         else
1339
            png_fp_set(state, PNG_FP_FRACTION | type);
1340

1341
         break;
1342

1343
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
1344 1345
         if (state & PNG_FP_SAW_DOT) /* delayed fraction */
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
1346

1347
         png_fp_add(state, type | PNG_FP_WAS_VALID);
1348

1349
         break;
1350 1351

      case PNG_FP_INTEGER + PNG_FP_SAW_E:
1352 1353
         if ((state & PNG_FP_SAW_DIGIT) == 0)
            goto PNG_FP_End;
1354

1355
         png_fp_set(state, PNG_FP_EXPONENT);
1356

1357
         break;
1358

1359 1360
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
         goto PNG_FP_End; ** no sign in fraction */
1361

1362
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
1363
         goto PNG_FP_End; ** Because SAW_DOT is always set */
1364

1365 1366
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
         png_fp_add(state, type | PNG_FP_WAS_VALID);
1367
         break;
1368

1369
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
1370 1371 1372 1373 1374 1375
         /* This is correct because the trailing '.' on an
          * integer is handled above - so we can only get here
          * with the sequence ".E" (with no preceding digits).
          */
         if ((state & PNG_FP_SAW_DIGIT) == 0)
            goto PNG_FP_End;
1376

1377
         png_fp_set(state, PNG_FP_EXPONENT);
1378

1379
         break;
1380

1381
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
1382 1383
         if (state & PNG_FP_SAW_ANY)
            goto PNG_FP_End; /* not a part of the number */
1384

1385
         png_fp_add(state, PNG_FP_SAW_SIGN);
1386

1387
         break;
1388

1389
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
1390
         goto PNG_FP_End; */
1391

1392 1393
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
1394

1395
         break;
1396

1397
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
1398
         goto PNG_FP_End; */
1399

G
[devel]  
Glenn Randers-Pehrson 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
      default: goto PNG_FP_End; /* I.e. break 2 */
      }

      /* The character seems ok, continue. */
      ++i;
   }

PNG_FP_End:
   /* Here at the end, update the state and return the correct
    * return code.
    */
   *statep = state;
   *whereami = i;

   return (state & PNG_FP_SAW_DIGIT) != 0;
}


/* The same but for a complete string. */
int
1420
png_check_fp_string(png_const_charp string, png_size_t size)
G
[devel]  
Glenn Randers-Pehrson 已提交
1421 1422
{
   int        state=0;
1423
   png_size_t char_index=0;
G
[devel]  
Glenn Randers-Pehrson 已提交
1424

1425 1426 1427 1428 1429
   if (png_check_fp_number(string, size, &state, &char_index) &&
      (char_index == size || string[char_index] == 0))
      return state /* must be non-zero - see above */;

   return 0; /* i.e. fail */
G
[devel]  
Glenn Randers-Pehrson 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}
#endif /* pCAL or sCAL */

#ifdef PNG_READ_sCAL_SUPPORTED
#  ifdef PNG_FLOATING_POINT_SUPPORTED
/* Utility used below - a simple accurate power of ten from an integral
 * exponent.
 */
static double
png_pow10(int power)
{
   int recip = 0;
   double d = 1;
1443

G
[devel]  
Glenn Randers-Pehrson 已提交
1444 1445 1446 1447
   /* Handle negative exponent with a reciprocal at the end because
    * 10 is exact whereas .1 is inexact in base 2
    */
   if (power < 0)
1448 1449
   {
      if (power < DBL_MIN_10_EXP) return 0;
G
[devel]  
Glenn Randers-Pehrson 已提交
1450
      recip = 1, power = -power;
1451
   }
1452

G
[devel]  
Glenn Randers-Pehrson 已提交
1453 1454 1455 1456 1457 1458 1459
   if (power > 0)
   {
      /* Decompose power bitwise. */
      double mult = 10;
      do
      {
         if (power & 1) d *= mult;
1460 1461
         mult *= mult;
         power >>= 1;
G
[devel]  
Glenn Randers-Pehrson 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
      }
      while (power > 0);

      if (recip) d = 1/d;
   }
   /* else power is 0 and d is 1 */

   return d;
}

/* Function to format a floating point value in ASCII with a given
 * precision.
 */
void /* PRIVATE */
png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
1477
    double fp, unsigned int precision)
G
[devel]  
Glenn Randers-Pehrson 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
{
   /* We use standard functions from math.h, but not printf because
    * that would require stdio.  The caller must supply a buffer of
    * sufficient size or we will png_error.  The tests on size and
    * the space in ascii[] consumed are indicated below.
    */
   if (precision < 1)
      precision = DBL_DIG;

   /* Enforce the limit of the implementation precision too. */
   if (precision > DBL_DIG+1)
      precision = DBL_DIG+1;

   /* Basic sanity checks */
   if (size >= precision+5) /* See the requirements below. */
   {
      if (fp < 0)
      {
         fp = -fp;
1497
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
1498
         --size;
G
[devel]  
Glenn Randers-Pehrson 已提交
1499 1500 1501 1502
      }

      if (fp >= DBL_MIN && fp <= DBL_MAX)
      {
1503 1504
         int exp_b10;       /* A base 10 exponent */
         double base;   /* 10^exp_b10 */
1505 1506 1507 1508

         /* First extract a base 10 exponent of the number,
          * the calculation below rounds down when converting
          * from base 2 to base 10 (multiply by log10(2) -
1509
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
1510 1511 1512 1513 1514
          * be increased.  Note that the arithmetic shift
          * performs a floor() unlike C arithmetic - using a
          * C multiply would break the following for negative
          * exponents.
          */
1515
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
1516

1517
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
1518

1519
         /* Avoid underflow here. */
1520
         base = png_pow10(exp_b10); /* May underflow */
1521

1522 1523 1524
         while (base < DBL_MIN || base < fp)
         {
            /* And this may overflow. */
1525
            double test = png_pow10(exp_b10+1);
1526

1527
            if (test <= DBL_MAX)
1528
               ++exp_b10, base = test;
1529

1530 1531 1532 1533
            else
               break;
         }

1534 1535
         /* Normalize fp and correct exp_b10, after this fp is in the
          * range [.1,1) and exp_b10 is both the exponent and the digit
1536 1537
          * *before* which the decimal point should be inserted
          * (starting with 0 for the first digit).  Note that this
1538
          * works even if 10^exp_b10 is out of range because of the
1539 1540 1541
          * test on DBL_MAX above.
          */
         fp /= base;
1542
         while (fp >= 1) fp /= 10, ++exp_b10;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

         /* Because of the code above fp may, at this point, be
          * less than .1, this is ok because the code below can
          * handle the leading zeros this generates, so no attempt
          * is made to correct that here.
          */

         {
            int czero, clead, cdigits;
            char exponent[10];

            /* Allow up to two leading zeros - this will not lengthen
             * the number compared to using E-n.
             */
1557
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
1558
            {
1559 1560
               czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
               exp_b10 = 0;      /* Dot added below before first output. */
1561 1562 1563 1564 1565 1566 1567 1568 1569
            }
            else
               czero = 0;    /* No zeros to add */

            /* Generate the digit list, stripping trailing zeros and
             * inserting a '.' before a digit if the exponent is 0.
             */
            clead = czero; /* Count of leading zeros */
            cdigits = 0;   /* Count of digits in list. */
1570

1571 1572 1573 1574 1575 1576
            do
            {
               double d;

               fp *= 10;
               /* Use modf here, not floor and subtract, so that
1577 1578 1579 1580
                * the separation is done in one step.  At the end
                * of the loop don't break the number into parts so
                * that the final digit is rounded.
                */
1581
               if (cdigits+czero-clead+1 < (int)precision)
1582
                  fp = modf(fp, &d);
1583

1584 1585
               else
               {
1586 1587 1588 1589 1590 1591 1592 1593 1594
                  d = floor(fp + .5);

                  if (d > 9)
                  {
                     /* Rounding up to 10, handle that here. */
                     if (czero > 0)
                     {
                        --czero, d = 1;
                        if (cdigits == 0) --clead;
G
[devel]  
Glenn Randers-Pehrson 已提交
1595
                     }
1596 1597 1598 1599 1600 1601
                     else
                     {
                        while (cdigits > 0 && d > 9)
                        {
                           int ch = *--ascii;

1602 1603
                           if (exp_b10 != (-1))
                              ++exp_b10;
1604 1605 1606 1607

                           else if (ch == 46)
                           {
                              ch = *--ascii, ++size;
1608
                              /* Advance exp_b10 to '1', so that the
1609 1610 1611
                               * decimal point happens after the
                               * previous digit.
                               */
1612
                              exp_b10 = 1;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
                           }

                           --cdigits;
                           d = ch - 47;  /* I.e. 1+(ch-48) */
                        }

                        /* Did we reach the beginning? If so adjust the
                         * exponent but take into account the leading
                         * decimal point.
                         */
                        if (d > 9)  /* cdigits == 0 */
                        {
1625
                           if (exp_b10 == (-1))
1626 1627 1628 1629 1630 1631 1632 1633
                           {
                              /* Leading decimal point (plus zeros?), if
                               * we lose the decimal point here it must
                               * be reentered below.
                               */
                              int ch = *--ascii;

                              if (ch == 46)
1634
                                 ++size, exp_b10 = 1;
1635

1636
                              /* Else lost a leading zero, so 'exp_b10' is
1637 1638 1639 1640
                               * still ok at (-1)
                               */
                           }
                           else
1641
                              ++exp_b10;
1642 1643 1644 1645 1646 1647 1648

                           /* In all cases we output a '1' */
                           d = 1;
                        }
                     }
                  }
                  fp = 0; /* Guarantees termination below. */
1649 1650 1651 1652
               }

               if (d == 0)
               {
1653 1654
                  ++czero;
                  if (cdigits == 0) ++clead;
1655 1656 1657
               }
               else
               {
1658 1659 1660 1661 1662 1663
                  /* Included embedded zeros in the digit count. */
                  cdigits += czero - clead;
                  clead = 0;

                  while (czero > 0)
                  {
1664 1665
                     /* exp_b10 == (-1) means we just output the decimal
                      * place - after the DP don't adjust 'exp_b10' any
1666 1667
                      * more!
                      */
1668
                     if (exp_b10 != (-1))
1669
                     {
1670
                        if (exp_b10 == 0) *ascii++ = 46, --size;
1671
                        /* PLUS 1: TOTAL 4 */
1672
                        --exp_b10;
1673 1674 1675 1676
                     }
                     *ascii++ = 48, --czero;
                  }

1677
                  if (exp_b10 != (-1))
1678
                  {
1679 1680 1681
                     if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
                                                                 above */
                     --exp_b10;
1682
                  }
1683
                  *ascii++ = (char)(48 + (int)d), ++cdigits;
1684 1685 1686 1687 1688 1689 1690 1691
               }
            }
            while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);

            /* The total output count (max) is now 4+precision */

            /* Check for an exponent, if we don't need one we are
             * done and just need to terminate the string.  At
1692
             * this point exp_b10==(-1) is effectively if flag - it got
1693 1694 1695 1696
             * to '-1' because of the decrement after outputing
             * the decimal point above (the exponent required is
             * *not* -1!)
             */
1697
            if (exp_b10 >= (-1) && exp_b10 <= 2)
1698 1699
            {
               /* The following only happens if we didn't output the
1700 1701 1702 1703 1704 1705
                * leading zeros above for negative exponent, so this
                * doest add to the digit requirement.  Note that the
                * two zeros here can only be output if the two leading
                * zeros were *not* output, so this doesn't increase
                * the output count.
                */
1706
               while (--exp_b10 >= 0) *ascii++ = 48;
1707

1708
               *ascii = 0;
1709

1710
               /* Total buffer requirement (including the '\0') is
1711 1712
                * 5+precision - see check at the start.
                */
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
               return;
            }

            /* Here if an exponent is required, adjust size for
             * the digits we output but did not count.  The total
             * digit output here so far is at most 1+precision - no
             * decimal point and no leading or trailing zeros have
             * been output.
             */
            size -= cdigits;

1724
            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */
1725 1726 1727 1728 1729

            /* The following use of an unsigned temporary avoids ambiguities in
             * the signed arithmetic on exp_b10 and permits GCC at least to do
             * better optimization.
             */
1730
            {
1731
               unsigned int uexp_b10;
1732

1733 1734 1735 1736 1737
               if (exp_b10 < 0)
               {
                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
                  uexp_b10 = -exp_b10;
               }
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
               else
                  uexp_b10 = exp_b10;

               cdigits = 0;

               while (uexp_b10 > 0)
               {
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
                  uexp_b10 /= 10;
               }
1749 1750 1751 1752 1753 1754 1755 1756
            }

            /* Need another size check here for the exponent digits, so
             * this need not be considered above.
             */
            if ((int)size > cdigits)
            {
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
1757

1758
               *ascii = 0;
1759

1760 1761 1762
               return;
            }
         }
G
[devel]  
Glenn Randers-Pehrson 已提交
1763 1764 1765 1766
      }
      else if (!(fp >= DBL_MIN))
      {
         *ascii++ = 48; /* '0' */
1767 1768
         *ascii = 0;
         return;
G
[devel]  
Glenn Randers-Pehrson 已提交
1769 1770 1771 1772
      }
      else
      {
         *ascii++ = 105; /* 'i' */
1773 1774 1775 1776
         *ascii++ = 110; /* 'n' */
         *ascii++ = 102; /* 'f' */
         *ascii = 0;
         return;
G
[devel]  
Glenn Randers-Pehrson 已提交
1777 1778 1779 1780
      }
   }

   /* Here on buffer too small. */
1781
   png_error(png_ptr, "ASCII conversion buffer too small");
G
[devel]  
Glenn Randers-Pehrson 已提交
1782 1783 1784
}

#  endif /* FLOATING_POINT */
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

#  ifdef PNG_FIXED_POINT_SUPPORTED
/* Function to format a fixed point value in ASCII.
 */
void /* PRIVATE */
png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
    png_fixed_point fp)
{
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
    * trailing \0, 13 characters:
    */
   if (size > 12)
   {
      png_uint_32 num;

      /* Avoid overflow here on the minimum integer. */
      if (fp < 0)
         *ascii++ = 45, --size, num = -fp;
      else
         num = fp;

1806
      if (num <= 0x80000000) /* else overflowed */
1807
      {
1808
         unsigned int ndigits = 0, first = 16 /* flag value */;
1809 1810
         char digits[10];

1811 1812 1813
         while (num)
         {
            /* Split the low digit off num: */
1814
            unsigned int tmp = num/10;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
            num -= tmp*10;
            digits[ndigits++] = (char)(48 + num);
            /* Record the first non-zero digit, note that this is a number
             * starting at 1, it's not actually the array index.
             */
            if (first == 16 && num > 0)
               first = ndigits;
            num = tmp;
         }

         if (ndigits > 0)
         {
            while (ndigits > 5) *ascii++ = digits[--ndigits];
            /* The remaining digits are fractional digits, ndigits is '5' or
             * smaller at this point.  It is certainly not zero.  Check for a
             * non-zero fractional digit:
             */
            if (first <= 5)
            {
1834
               unsigned int i;
1835
               *ascii++ = 46; /* decimal point */
1836 1837 1838
               /* ndigits may be <5 for small numbers, output leading zeros
                * then ndigits digits to first:
                */
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
               i = 5;
               while (ndigits < i) *ascii++ = 48, --i;
               while (ndigits >= first) *ascii++ = digits[--ndigits];
               /* Don't output the trailing zeros! */
            }
         }
         else
            *ascii++ = 48;

         /* And null terminate the string: */
         *ascii = 0;
         return;
1851 1852 1853 1854 1855 1856 1857
      }
   }

   /* Here on buffer too small. */
   png_error(png_ptr, "ASCII conversion buffer too small");
}
#   endif /* FIXED_POINT */
G
[devel]  
Glenn Randers-Pehrson 已提交
1858 1859
#endif /* READ_SCAL */

1860
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
G
[devel]  
Glenn Randers-Pehrson 已提交
1861 1862 1863 1864 1865
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
png_fixed_point
png_fixed(png_structp png_ptr, double fp, png_const_charp text)
{
   double r = floor(100000 * fp + .5);
1866

1867 1868
   if (r > 2147483647. || r < -2147483648.)
      png_fixed_error(png_ptr, text);
G
[devel]  
Glenn Randers-Pehrson 已提交
1869

1870
   return (png_fixed_point)r;
G
[devel]  
Glenn Randers-Pehrson 已提交
1871 1872 1873
}
#endif

1874
#if defined(PNG_READ_GAMMA_SUPPORTED) || \
1875
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
G
[devel]  
Glenn Randers-Pehrson 已提交
1876 1877 1878 1879 1880 1881 1882 1883
/* muldiv functions */
/* This API takes signed arguments and rounds the result to the nearest
 * integer (or, for a fixed point number - the standard argument - to
 * the nearest .00001).  Overflow and divide by zero are signalled in
 * the result, a boolean - true on success, false on overflow.
 */
int
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
1884
    png_int_32 divisor)
G
[devel]  
Glenn Randers-Pehrson 已提交
1885
{
1886 1887
   /* Return a * times / divisor, rounded. */
   if (divisor != 0)
G
[devel]  
Glenn Randers-Pehrson 已提交
1888 1889 1890
   {
      if (a == 0 || times == 0)
      {
1891
         *res = 0;
G
[devel]  
Glenn Randers-Pehrson 已提交
1892 1893 1894 1895 1896
         return 1;
      }
      else
      {
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
1897 1898
         double r = a;
         r *= times;
1899
         r /= divisor;
1900
         r = floor(r+.5);
1901

1902
         /* A png_fixed_point is a 32-bit integer. */
1903 1904 1905 1906 1907
         if (r <= 2147483647. && r >= -2147483648.)
         {
            *res = (png_fixed_point)r;
            return 1;
         }
G
[devel]  
Glenn Randers-Pehrson 已提交
1908
#else
1909 1910
         int negative = 0;
         png_uint_32 A, T, D;
1911
         png_uint_32 s16, s32, s00;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

         if (a < 0)
            negative = 1, A = -a;
         else
            A = a;

         if (times < 0)
            negative = !negative, T = -times;
         else
            T = times;

1923 1924
         if (divisor < 0)
            negative = !negative, D = -divisor;
1925
         else
1926
            D = divisor;
1927 1928 1929 1930

         /* Following can't overflow because the arguments only
          * have 31 bits each, however the result may be 32 bits.
          */
1931
         s16 = (A >> 16) * (T & 0xffff) +
1932
                           (A & 0xffff) * (T >> 16);
1933 1934 1935
         /* Can't overflow because the a*times bit is only 30
          * bits at most.
          */
1936 1937
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
         s00 = (A & 0xffff) * (T & 0xffff);
1938 1939 1940

         s16 = (s16 & 0xffff) << 16;
         s00 += s16;
1941 1942 1943

         if (s00 < s16)
            ++s32; /* carry */
1944 1945 1946

         if (s32 < D) /* else overflow */
         {
1947
            /* s32.s00 is now the 64-bit product, do a standard
1948 1949 1950 1951 1952 1953 1954 1955 1956
             * division, we know that s32 < D, so the maximum
             * required shift is 31.
             */
            int bitshift = 32;
            png_fixed_point result = 0; /* NOTE: signed */

            while (--bitshift >= 0)
            {
               png_uint_32 d32, d00;
1957

1958 1959
               if (bitshift > 0)
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
1960

1961 1962 1963 1964 1965
               else
                  d32 = 0, d00 = D;

               if (s32 > d32)
               {
1966
                  if (s00 < d00) --s32; /* carry */
1967 1968
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
               }
1969

1970 1971 1972
               else
                  if (s32 == d32 && s00 >= d00)
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
1973 1974 1975
            }

            /* Handle the rounding. */
1976 1977
            if (s00 >= (D >> 1))
               ++result;
1978

1979 1980
            if (negative)
               result = -result;
1981 1982

            /* Check for overflow. */
1983
            if ((negative && result <= 0) || (!negative && result >= 0))
1984 1985 1986 1987 1988
            {
               *res = result;
               return 1;
            }
         }
G
[devel]  
Glenn Randers-Pehrson 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
#endif
      }
   }

   return 0;
}
#endif /* READ_GAMMA || INCH_CONVERSIONS */

#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
/* The following is for when the caller doesn't much care about the
 * result.
 */
png_fixed_point
png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
2003
    png_int_32 divisor)
G
[devel]  
Glenn Randers-Pehrson 已提交
2004 2005
{
   png_fixed_point result;
2006

2007
   if (png_muldiv(&result, a, times, divisor))
G
[devel]  
Glenn Randers-Pehrson 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
      return result;

   png_warning(png_ptr, "fixed point overflow ignored");
   return 0;
}
#endif

#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
png_fixed_point
png_reciprocal(png_fixed_point a)
{
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = floor(1E10/a+.5);
2022

G
[devel]  
Glenn Randers-Pehrson 已提交
2023 2024 2025 2026
   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   png_fixed_point res;
2027

G
[devel]  
Glenn Randers-Pehrson 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
   if (png_muldiv(&res, 100000, 100000, a))
      return res;
#endif

   return 0; /* error/overflow */
}

/* A local convenience routine. */
static png_fixed_point
png_product2(png_fixed_point a, png_fixed_point b)
{
2039
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
G
[devel]  
Glenn Randers-Pehrson 已提交
2040 2041 2042 2043
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = a * 1E-5;
   r *= b;
   r = floor(r+.5);
2044

G
[devel]  
Glenn Randers-Pehrson 已提交
2045 2046 2047 2048
   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   png_fixed_point res;
2049

G
[devel]  
Glenn Randers-Pehrson 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
   if (png_muldiv(&res, a, b, 100000))
      return res;
#endif

   return 0; /* overflow */
}

/* The inverse of the above. */
png_fixed_point
png_reciprocal2(png_fixed_point a, png_fixed_point b)
{
2061
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
G
[devel]  
Glenn Randers-Pehrson 已提交
2062 2063 2064 2065
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
   double r = 1E15/a;
   r /= b;
   r = floor(r+.5);
2066

G
[devel]  
Glenn Randers-Pehrson 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075
   if (r <= 2147483647. && r >= -2147483648.)
      return (png_fixed_point)r;
#else
   /* This may overflow because the range of png_fixed_point isn't symmetric,
    * but this API is only used for the product of file and screen gamma so it
    * doesn't matter that the smallest number it can produce is 1/21474, not
    * 1/100000
    */
   png_fixed_point res = png_product2(a, b);
2076

G
[devel]  
Glenn Randers-Pehrson 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
   if (res != 0)
      return png_reciprocal(res);
#endif

   return 0; /* overflow */
}
#endif /* READ_GAMMA */

#ifdef PNG_CHECK_cHRM_SUPPORTED
/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
 * 2010: moved from pngset.c) */
/*
 *    Multiply two 32-bit numbers, V1 and V2, using 32-bit
2090
 *    arithmetic, to produce a 64-bit result in the HI/LO words.
G
[devel]  
Glenn Randers-Pehrson 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
 *
 *                  A B
 *                x C D
 *               ------
 *              AD || BD
 *        AC || CB || 0
 *
 *    where A and B are the high and low 16-bit words of V1,
 *    C and D are the 16-bit words of V2, AD is the product of
 *    A and D, and X || Y is (X << 16) + Y.
*/

void /* PRIVATE */
png_64bit_product (long v1, long v2, unsigned long *hi_product,
2105
    unsigned long *lo_product)
G
[devel]  
Glenn Randers-Pehrson 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
{
   int a, b, c, d;
   long lo, hi, x, y;

   a = (v1 >> 16) & 0xffff;
   b = v1 & 0xffff;
   c = (v2 >> 16) & 0xffff;
   d = v2 & 0xffff;

   lo = b * d;                   /* BD */
   x = a * d + c * b;            /* AD + CB */
   y = ((lo >> 16) & 0xffff) + x;

   lo = (lo & 0xffff) | ((y & 0xffff) << 16);
   hi = (y >> 16) & 0xffff;

   hi += a * c;                  /* AC */

   *hi_product = (unsigned long)hi;
   *lo_product = (unsigned long)lo;
}
#endif /* CHECK_cHRM */

#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
/* Fixed point gamma.
 *
 * To calculate gamma this code implements fast log() and exp() calls using only
2134 2135
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
 * or 16-bit sample values.
G
[devel]  
Glenn Randers-Pehrson 已提交
2136 2137 2138 2139 2140
 *
 * The tables used here were calculated using simple 'bc' programs, but C double
 * precision floating point arithmetic would work fine.  The programs are given
 * at the head of each table.
 *
2141
 * 8-bit log table
G
[devel]  
Glenn Randers-Pehrson 已提交
2142
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2143
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
2144
 *   mantissa.  The numbers are 32-bit fractions.
G
[devel]  
Glenn Randers-Pehrson 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 */
static png_uint_32
png_8bit_l2[128] =
{
#  if PNG_DO_BC
      for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
#  endif
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
   24347096U, 0U
#if 0
2175 2176 2177 2178
   /* The following are the values for 16-bit tables - these work fine for the
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
    * use these all the shifts below must be adjusted appropriately.
G
[devel]  
Glenn Randers-Pehrson 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    */
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
   1119, 744, 372
#endif
};

2195
PNG_STATIC png_int_32
2196
png_log8bit(unsigned int x)
G
[devel]  
Glenn Randers-Pehrson 已提交
2197
{
2198
   unsigned int lg2 = 0;
G
[devel]  
Glenn Randers-Pehrson 已提交
2199 2200 2201 2202 2203 2204
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
    * because the log is actually negate that means adding 1.  The final
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
    * input), return 7.99998 for the overflow (log 0) case - so the result is
    * always at most 19 bits.
    */
2205
   if ((x &= 0xff) == 0)
2206
      return 0xffffffff;
2207 2208

   if ((x & 0xf0) == 0)
2209
      lg2  = 4, x <<= 4;
2210 2211

   if ((x & 0xc0) == 0)
2212
      lg2 += 2, x <<= 2;
2213 2214

   if ((x & 0x80) == 0)
2215
      lg2 += 1, x <<= 1;
2216

2217
   /* result is at most 19 bits, so this cast is safe: */
2218
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
G
[devel]  
Glenn Randers-Pehrson 已提交
2219 2220
}

2221 2222
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
G
[devel]  
Glenn Randers-Pehrson 已提交
2223 2224
 * get an approximation then multiply the approximation by a correction factor
 * determined by the remaining up to 8 bits.  This requires an additional step
2225
 * in the 16-bit case.
G
[devel]  
Glenn Randers-Pehrson 已提交
2226 2227 2228 2229 2230 2231 2232 2233
 *
 * We want log2(value/65535), we have log2(v'/255), where:
 *
 *    value = v' * 256 + v''
 *          = v' * f
 *
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
2234 2235
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
G
[devel]  
Glenn Randers-Pehrson 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244
 *
 * This gives a final formula using a calculated value 'x' which is value/v' and
 * scaling by 65536 to match the above table:
 *
 *   log2(x/257) * 65536
 *
 * Since these numbers are so close to '1' we can use simple linear
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
 * (result 367.179).  The values used below are scaled by a further 64 to give
2245
 * 16-bit precision in the interpolation:
G
[devel]  
Glenn Randers-Pehrson 已提交
2246 2247 2248 2249 2250
 *
 * Start (256): -23591
 * Zero  (257):      0
 * End   (258):  23499
 */
2251
PNG_STATIC png_int_32
G
[devel]  
Glenn Randers-Pehrson 已提交
2252 2253
png_log16bit(png_uint_32 x)
{
2254
   unsigned int lg2 = 0;
G
[devel]  
Glenn Randers-Pehrson 已提交
2255 2256

   /* As above, but now the input has 16 bits. */
2257 2258 2259 2260
   if ((x &= 0xffff) == 0)
      return 0xffffffff;

   if ((x & 0xff00) == 0)
2261
      lg2  = 8, x <<= 8;
2262 2263

   if ((x & 0xf000) == 0)
2264
      lg2 += 4, x <<= 4;
2265 2266

   if ((x & 0xc000) == 0)
2267
      lg2 += 2, x <<= 2;
2268 2269

   if ((x & 0x8000) == 0)
2270
      lg2 += 1, x <<= 1;
G
[devel]  
Glenn Randers-Pehrson 已提交
2271

2272
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
G
[devel]  
Glenn Randers-Pehrson 已提交
2273 2274
    * value.
    */
2275 2276
   lg2 <<= 28;
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
G
[devel]  
Glenn Randers-Pehrson 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

   /* Now we need to interpolate the factor, this requires a division by the top
    * 8 bits.  Do this with maximum precision.
    */
   x = ((x << 16) + (x >> 9)) / (x >> 8);

   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
    * 16 bits to interpolate to get the low bits of the result.  Round the
    * answer.  Note that the end point values are scaled by 64 to retain overall
2287
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
G
[devel]  
Glenn Randers-Pehrson 已提交
2288 2289 2290
    * the overall scaling by 6-12.  Round at every step.
    */
   x -= 1U << 24;
2291

G
[devel]  
Glenn Randers-Pehrson 已提交
2292
   if (x <= 65536U) /* <= '257' */
2293
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
2294

G
[devel]  
Glenn Randers-Pehrson 已提交
2295
   else
2296
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
G
[devel]  
Glenn Randers-Pehrson 已提交
2297

2298
   /* Safe, because the result can't have more than 20 bits: */
2299
   return (png_int_32)((lg2 + 2048) >> 12);
G
[devel]  
Glenn Randers-Pehrson 已提交
2300 2301
}

2302
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
2303
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
G
[devel]  
Glenn Randers-Pehrson 已提交
2304 2305 2306
 * each case only the low 16 bits are relevant - the fraction - since the
 * integer bits (the top 4) simply determine a shift.
 *
2307
 * The worst case is the 16-bit distinction between 65535 and 65534, this
G
[devel]  
Glenn Randers-Pehrson 已提交
2308 2309 2310 2311 2312
 * requires perhaps spurious accuracty in the decoding of the logarithm to
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
 * of getting this accuracy in practice.
 *
 * To deal with this the following exp() function works out the exponent of the
2313
 * frational part of the logarithm by using an accurate 32-bit value from the
G
[devel]  
Glenn Randers-Pehrson 已提交
2314 2315 2316 2317 2318 2319 2320 2321
 * top four fractional bits then multiplying in the remaining bits.
 */
static png_uint_32
png_32bit_exp[16] =
{
#  if PNG_DO_BC
      for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
#  endif
2322
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
G
[devel]  
Glenn Randers-Pehrson 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
   2553802834U, 2445529972U, 2341847524U, 2242560872U
};

/* Adjustment table; provided to explain the numbers in the code below. */
#if PNG_DO_BC
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
   11 44937.64284865548751208448
   10 45180.98734845585101160448
    9 45303.31936980687359311872
    8 45364.65110595323018870784
    7 45395.35850361789624614912
    6 45410.72259715102037508096
    5 45418.40724413220722311168
    4 45422.25021786898173001728
    3 45424.17186732298419044352
    2 45425.13273269940811464704
    1 45425.61317555035558641664
    0 45425.85339951654943850496
#endif

2345
PNG_STATIC png_uint_32
2346
png_exp(png_fixed_point x)
G
[devel]  
Glenn Randers-Pehrson 已提交
2347
{
2348
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
G
[devel]  
Glenn Randers-Pehrson 已提交
2349
   {
2350
      /* Obtain a 4-bit approximation */
G
[devel]  
Glenn Randers-Pehrson 已提交
2351 2352 2353 2354
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];

      /* Incorporate the low 12 bits - these decrease the returned value by
       * multiplying by a number less than 1 if the bit is set.  The multiplier
2355
       * is determined by the above table and the shift. Notice that the values
G
[devel]  
Glenn Randers-Pehrson 已提交
2356 2357 2358
       * converge on 45426 and this is used to allow linear interpolation of the
       * low bits.
       */
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
      if (x & 0x800)
         e -= (((e >> 16) * 44938U) +  16U) >> 5;

      if (x & 0x400)
         e -= (((e >> 16) * 45181U) +  32U) >> 6;

      if (x & 0x200)
         e -= (((e >> 16) * 45303U) +  64U) >> 7;

      if (x & 0x100)
         e -= (((e >> 16) * 45365U) + 128U) >> 8;

      if (x & 0x080)
         e -= (((e >> 16) * 45395U) + 256U) >> 9;

      if (x & 0x040)
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
G
[devel]  
Glenn Randers-Pehrson 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384

      /* And handle the low 6 bits in a single block. */
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;

      /* Handle the upper bits of x. */
      e >>= x >> 16;
      return e;
   }

2385 2386 2387 2388 2389
   /* Check for overflow */
   if (x <= 0)
      return png_32bit_exp[0];

   /* Else underflow */
G
[devel]  
Glenn Randers-Pehrson 已提交
2390 2391 2392
   return 0;
}

2393
PNG_STATIC png_byte
2394
png_exp8bit(png_fixed_point lg2)
G
[devel]  
Glenn Randers-Pehrson 已提交
2395
{
2396
   /* Get a 32-bit value: */
2397
   png_uint_32 x = png_exp(lg2);
G
[devel]  
Glenn Randers-Pehrson 已提交
2398

2399
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
G
[devel]  
Glenn Randers-Pehrson 已提交
2400 2401 2402 2403
    * second, rounding, step can't overflow because of the first, subtraction,
    * step.
    */
   x -= x >> 8;
2404
   return (png_byte)((x + 0x7fffffU) >> 24);
G
[devel]  
Glenn Randers-Pehrson 已提交
2405 2406
}

2407
PNG_STATIC png_uint_16
2408
png_exp16bit(png_fixed_point lg2)
G
[devel]  
Glenn Randers-Pehrson 已提交
2409
{
2410
   /* Get a 32-bit value: */
2411
   png_uint_32 x = png_exp(lg2);
G
[devel]  
Glenn Randers-Pehrson 已提交
2412

2413
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
G
[devel]  
Glenn Randers-Pehrson 已提交
2414
   x -= x >> 16;
2415
   return (png_uint_16)((x + 32767U) >> 16);
G
[devel]  
Glenn Randers-Pehrson 已提交
2416 2417 2418 2419
}
#endif /* FLOATING_ARITHMETIC */

png_byte
2420
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2421 2422 2423 2424
{
   if (value > 0 && value < 255)
   {
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2425
         double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
2426
         return (png_byte)r;
G
[devel]  
Glenn Randers-Pehrson 已提交
2427
#     else
2428
         png_int_32 lg2 = png_log8bit(value);
2429
         png_fixed_point res;
2430

2431
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2432
            return png_exp8bit(res);
G
[devel]  
Glenn Randers-Pehrson 已提交
2433

2434 2435
         /* Overflow. */
         value = 0;
2436
#     endif
G
[devel]  
Glenn Randers-Pehrson 已提交
2437 2438
   }

2439
   return (png_byte)value;
G
[devel]  
Glenn Randers-Pehrson 已提交
2440 2441 2442
}

png_uint_16
2443
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2444 2445 2446 2447
{
   if (value > 0 && value < 65535)
   {
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2448
         double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
2449
         return (png_uint_16)r;
G
[devel]  
Glenn Randers-Pehrson 已提交
2450
#     else
2451
         png_int_32 lg2 = png_log16bit(value);
2452
         png_fixed_point res;
2453

2454
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2455
            return png_exp16bit(res);
G
[devel]  
Glenn Randers-Pehrson 已提交
2456

2457 2458
         /* Overflow. */
         value = 0;
2459
#     endif
G
[devel]  
Glenn Randers-Pehrson 已提交
2460 2461
   }

2462
   return (png_uint_16)value;
G
[devel]  
Glenn Randers-Pehrson 已提交
2463 2464 2465
}

/* This does the right thing based on the bit_depth field of the
2466 2467 2468
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
 * is nominally a 16-bit value if bit depth is 8 then the result is
 * 8-bit (as are the arguments.)
G
[devel]  
Glenn Randers-Pehrson 已提交
2469 2470
 */
png_uint_16 /* PRIVATE */
2471
png_gamma_correct(png_structp png_ptr, unsigned int value,
2472
    png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2473 2474
{
   if (png_ptr->bit_depth == 8)
2475
      return png_gamma_8bit_correct(value, gamma_val);
2476

G
[devel]  
Glenn Randers-Pehrson 已提交
2477
   else
2478
      return png_gamma_16bit_correct(value, gamma_val);
G
[devel]  
Glenn Randers-Pehrson 已提交
2479 2480 2481 2482 2483 2484
}

/* This is the shared test on whether a gamma value is 'significant' - whether
 * it is worth doing gamma correction.
 */
int /* PRIVATE */
2485
png_gamma_significant(png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2486
{
2487 2488
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
G
[devel]  
Glenn Randers-Pehrson 已提交
2489 2490
}

2491
/* Internal function to build a single 16-bit table - the table consists of
G
[devel]  
Glenn Randers-Pehrson 已提交
2492 2493 2494
 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
 * to shift the input values right (or 16-number_of_signifiant_bits).
 *
2495
 * The caller is responsible for ensuring that the table gets cleaned up on
G
[devel]  
Glenn Randers-Pehrson 已提交
2496 2497 2498 2499 2500
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
 * should be somewhere that will be cleaned.
 */
static void
png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
2501
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2502 2503
{
   /* Various values derived from 'shift': */
2504 2505 2506 2507
   PNG_CONST unsigned int num = 1U << (8U - shift);
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
   unsigned int i;
G
[devel]  
Glenn Randers-Pehrson 已提交
2508 2509

   png_uint_16pp table = *ptable =
2510
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
G
[devel]  
Glenn Randers-Pehrson 已提交
2511 2512 2513 2514

   for (i = 0; i < num; i++)
   {
      png_uint_16p sub_table = table[i] =
2515
          (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
G
[devel]  
Glenn Randers-Pehrson 已提交
2516 2517

      /* The 'threshold' test is repeated here because it can arise for one of
2518
       * the 16-bit tables even if the others don't hit it.
G
[devel]  
Glenn Randers-Pehrson 已提交
2519
       */
2520
      if (png_gamma_significant(gamma_val))
G
[devel]  
Glenn Randers-Pehrson 已提交
2521
      {
2522 2523 2524 2525 2526 2527 2528 2529
         /* The old code would overflow at the end and this would cause the
          * 'pow' function to return a result >1, resulting in an
          * arithmetic error.  This code follows the spec exactly; ig is
          * the recovered input sample, it always has 8-16 bits.
          *
          * We want input * 65535/max, rounded, the arithmetic fits in 32
          * bits (unsigned) so long as max <= 32767.
          */
2530
         unsigned int j;
2531 2532
         for (j = 0; j < 256; j++)
         {
2533
            png_uint_32 ig = (j << (8-shift)) + i;
G
[devel]  
Glenn Randers-Pehrson 已提交
2534
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2535
               /* Inline the 'max' scaling operation: */
2536
               double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
2537
               sub_table[j] = (png_uint_16)d;
G
[devel]  
Glenn Randers-Pehrson 已提交
2538
#           else
2539
               if (shift)
2540
                  ig = (ig * 65535U + max_by_2)/max;
2541

2542
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
G
[devel]  
Glenn Randers-Pehrson 已提交
2543
#           endif
2544
         }
G
[devel]  
Glenn Randers-Pehrson 已提交
2545 2546 2547 2548
      }
      else
      {
         /* We must still build a table, but do it the fast way. */
2549
         unsigned int j;
2550

2551 2552 2553
         for (j = 0; j < 256; j++)
         {
            png_uint_32 ig = (j << (8-shift)) + i;
2554

2555 2556
            if (shift)
               ig = (ig * 65535U + max_by_2)/max;
2557

2558
            sub_table[j] = (png_uint_16)ig;
2559
         }
G
[devel]  
Glenn Randers-Pehrson 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568
      }
   }
}

/* NOTE: this function expects the *inverse* of the overall gamma transformation
 * required.
 */
static void
png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
2569
   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2570
{
2571 2572 2573
   PNG_CONST unsigned int num = 1U << (8U - shift);
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
   unsigned int i;
G
[devel]  
Glenn Randers-Pehrson 已提交
2574 2575 2576
   png_uint_32 last;

   png_uint_16pp table = *ptable =
2577
       (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
G
[devel]  
Glenn Randers-Pehrson 已提交
2578 2579

   /* 'num' is the number of tables and also the number of low bits of low
2580
    * bits of the input 16-bit value used to select a table.  Each table is
G
[devel]  
Glenn Randers-Pehrson 已提交
2581 2582 2583 2584
    * itself index by the high 8 bits of the value.
    */
   for (i = 0; i < num; i++)
      table[i] = (png_uint_16p)png_malloc(png_ptr,
2585
          256 * png_sizeof(png_uint_16));
G
[devel]  
Glenn Randers-Pehrson 已提交
2586

2587
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
G
[devel]  
Glenn Randers-Pehrson 已提交
2588 2589
    * pow(out,g) is an *input* value.  'last' is the last input value set.
    *
2590 2591
    * In the loop 'i' is used to find output values.  Since the output is
    * 8-bit there are only 256 possible values.  The tables are set up to
G
[devel]  
Glenn Randers-Pehrson 已提交
2592 2593 2594 2595 2596
    * select the closest possible output value for each input by finding
    * the input value at the boundary between each pair of output values
    * and filling the table up to that boundary with the lower output
    * value.
    *
2597
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
2598
    * values the code below uses a 16-bit value in i; the values start at
G
[devel]  
Glenn Randers-Pehrson 已提交
2599 2600 2601 2602 2603
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
    * entries are filled with 255).  Start i at 128 and fill all 'last'
    * table entries <= 'max'
    */
   last = 0;
2604
   for (i = 0; i < 255; ++i) /* 8-bit output value */
G
[devel]  
Glenn Randers-Pehrson 已提交
2605 2606
   {
      /* Find the corresponding maximum input value */
2607
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
2608

G
[devel]  
Glenn Randers-Pehrson 已提交
2609
      /* Find the boundary value in 16 bits: */
2610
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
2611

G
[devel]  
Glenn Randers-Pehrson 已提交
2612
      /* Adjust (round) to (16-shift) bits: */
2613
      bound = (bound * max + 32768U)/65535U + 1U;
G
[devel]  
Glenn Randers-Pehrson 已提交
2614

2615
      while (last < bound)
G
[devel]  
Glenn Randers-Pehrson 已提交
2616
      {
2617 2618
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
         last++;
G
[devel]  
Glenn Randers-Pehrson 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
      }
   }

   /* And fill in the final entries. */
   while (last < (num << 8))
   {
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
      last++;
   }
}

2630
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
G
[devel]  
Glenn Randers-Pehrson 已提交
2631 2632 2633 2634 2635
 * typically much faster).  Note that libpng currently does no sBIT processing
 * (apparently contrary to the spec) so a 256 entry table is always generated.
 */
static void
png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
2636
   PNG_CONST png_fixed_point gamma_val)
G
[devel]  
Glenn Randers-Pehrson 已提交
2637
{
2638
   unsigned int i;
G
[devel]  
Glenn Randers-Pehrson 已提交
2639 2640
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);

2641 2642
   if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
      table[i] = png_gamma_8bit_correct(i, gamma_val);
2643

2644 2645
   else for (i=0; i<256; ++i)
      table[i] = (png_byte)i;
G
[devel]  
Glenn Randers-Pehrson 已提交
2646 2647 2648 2649 2650 2651 2652 2653
}

/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
 * tables, we don't make a full table if we are reducing to 8-bit in
 * the future.  Note also how the gamma_16 tables are segmented so that
 * we don't need to allocate > 64K chunks for a full 16-bit table.
 */
void /* PRIVATE */
2654
png_build_gamma_table(png_structp png_ptr, int bit_depth)
G
[devel]  
Glenn Randers-Pehrson 已提交
2655 2656 2657 2658 2659 2660
{
  png_debug(1, "in png_build_gamma_table");

  if (bit_depth <= 8)
  {
     png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
2661 2662
         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);
G
[devel]  
Glenn Randers-Pehrson 已提交
2663 2664

#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2665
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
G
[devel]  
Glenn Randers-Pehrson 已提交
2666
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2667
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
G
[devel]  
Glenn Randers-Pehrson 已提交
2668 2669
     {
        png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
2670
            png_reciprocal(png_ptr->gamma));
G
[devel]  
Glenn Randers-Pehrson 已提交
2671 2672

        png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
2673 2674
            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
            png_ptr->gamma/* Probably doing rgb_to_gray */);
G
[devel]  
Glenn Randers-Pehrson 已提交
2675
     }
2676
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
G
[devel]  
Glenn Randers-Pehrson 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
  }
  else
  {
     png_byte shift, sig_bit;

     if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
     {
        sig_bit = png_ptr->sig_bit.red;

        if (png_ptr->sig_bit.green > sig_bit)
           sig_bit = png_ptr->sig_bit.green;

        if (png_ptr->sig_bit.blue > sig_bit)
           sig_bit = png_ptr->sig_bit.blue;
     }
     else
        sig_bit = png_ptr->sig_bit.gray;

2695
     /* 16-bit gamma code uses this equation:
G
[devel]  
Glenn Randers-Pehrson 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
      *
      *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
      *
      * Where 'iv' is the input color value and 'ov' is the output value -
      * pow(iv, gamma).
      *
      * Thus the gamma table consists of up to 256 256 entry tables.  The table
      * is selected by the (8-gamma_shift) most significant of the low 8 bits of
      * the color value then indexed by the upper 8 bits:
      *
      *   table[low bits][high 8 bits]
      *
      * So the table 'n' corresponds to all those 'iv' of:
      *
2710
      *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
G
[devel]  
Glenn Randers-Pehrson 已提交
2711 2712
      *
      */
2713 2714
     if (sig_bit > 0 && sig_bit < 16U)
        shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
2715

G
[devel]  
Glenn Randers-Pehrson 已提交
2716 2717 2718
     else
        shift = 0; /* keep all 16 bits */

2719
     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
G
[devel]  
Glenn Randers-Pehrson 已提交
2720
     {
2721 2722 2723 2724
        /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
         * the significant bits in the *input* when the output will
         * eventually be 8 bits.  By default it is 11.
         */
G
[devel]  
Glenn Randers-Pehrson 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733
        if (shift < (16U - PNG_MAX_GAMMA_8))
           shift = (16U - PNG_MAX_GAMMA_8);
     }

     if (shift > 8U)
        shift = 8U; /* Guarantees at least one table! */

     png_ptr->gamma_shift = shift;

2734
#ifdef PNG_16BIT_SUPPORTED
2735
     /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
2736
      * PNG_COMPOSE).  This effectively smashed the background calculation for
2737
      * 16-bit output because the 8-bit table assumes the result will be reduced
2738 2739
      * to 8 bits.
      */
2740
     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
2741
#endif
2742 2743 2744 2745
         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
         png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);

2746
#ifdef PNG_16BIT_SUPPORTED
G
[devel]  
Glenn Randers-Pehrson 已提交
2747
     else
2748 2749 2750
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
         png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
         png_ptr->screen_gamma) : PNG_FP_1);
2751
#endif
G
[devel]  
Glenn Randers-Pehrson 已提交
2752 2753

#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2754
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
G
[devel]  
Glenn Randers-Pehrson 已提交
2755
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2756
     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
G
[devel]  
Glenn Randers-Pehrson 已提交
2757
     {
2758
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
2759
            png_reciprocal(png_ptr->gamma));
G
[devel]  
Glenn Randers-Pehrson 已提交
2760

2761
        /* Notice that the '16 from 1' table should be full precision, however
2762
         * the lookup on this table still uses gamma_shift, so it can't be.
2763 2764
         * TODO: fix this.
         */
G
[devel]  
Glenn Randers-Pehrson 已提交
2765
        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
2766 2767
            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
            png_ptr->gamma/* Probably doing rgb_to_gray */);
G
[devel]  
Glenn Randers-Pehrson 已提交
2768
     }
2769
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
G
[devel]  
Glenn Randers-Pehrson 已提交
2770 2771 2772
  }
}
#endif /* READ_GAMMA */
2773
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */