- 18 1月, 2017 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
The generic hugetlbfs code can handle not finding the default huge page size correctly. With HPAGE_SHIFT = 0 we see in dmesg: hugetlbfs: disabling because there are no supported hugepage sizes bash-4.2# echo 30 > /proc/sys/vm/nr_hugepages bash: echo: write error: Operation not supported Fixes: 03bb2d65 ("powerpc: get hugetlbpage handling more generic") Reported-by: NChris Smart <chris@distroguy.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Nicholas Piggin 提交于
Commit 9b081e10 ("powerpc: port 64 bits pgtable_cache to 32 bits") mixed up PMD_INDEX_SIZE and PMD_CACHE_INDEX a couple of times. This resulted in 64s/hash/4k configs to panic at boot with a false positive error check. Fix that and simplify error handling by moving the check to the caller. Fixes: 9b081e10 ("powerpc: port 64 bits pgtable_cache to 32 bits") Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 12月, 2016 2 次提交
-
-
由 Christophe Leroy 提交于
8xx uses a two level page table with two different linux page size support (4k and 16k). 8xx also support two different hugepage sizes 512k and 8M. In order to support them on linux we define two different page table layout. The size of pages is in the PGD entry, using PS field (bits 28-29): 00 : Small pages (4k or 16k) 01 : 512k pages 10 : reserved 11 : 8M pages For 512K hugepage size a pgd entry have the below format [<hugepte address >0101] . The hugepte table allocated will contain 8 entries pointing to 512K huge pte in 4k pages mode and 64 entries in 16k pages mode. For 8M in 16k mode, a pgd entry have the below format [<hugepte address >1101] . The hugepte table allocated will contain 8 entries pointing to 8M huge pte. For 8M in 4k mode, multiple pgd entries point to the same hugepte address and pgd entry will have the below format [<hugepte address>1101]. The hugepte table allocated will only have one entry. For the time being, we do not support CPU15 ERRATA when HUGETLB is selected Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> (v3, for the generic bits) Signed-off-by: NScott Wood <oss@buserror.net>
-
由 Christophe Leroy 提交于
Today there are two implementations of hugetlbpages which are managed by exclusive #ifdefs: * FSL_BOOKE: several directory entries points to the same single hugepage * BOOK3S: one upper level directory entry points to a table of hugepages In preparation of implementation of hugepage support on the 8xx, we need a mix of the two above solutions, because the 8xx needs both cases depending on the size of pages: * In 4k page size mode, each PGD entry covers a 4M bytes area. It means that 2 PGD entries will be necessary to cover an 8M hugepage while a single PGD entry will cover 8x 512k hugepages. * In 16 page size mode, each PGD entry covers a 64M bytes area. It means that 8x 8M hugepages will be covered by one PGD entry and 64x 512k hugepages will be covers by one PGD entry. This patch: * removes #ifdefs in favor of if/else based on the range sizes * merges the two huge_pte_alloc() functions as they are pretty similar * merges the two hugetlbpage_init() functions as they are pretty similar Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> (v3) Signed-off-by: NScott Wood <oss@buserror.net>
-
- 23 9月, 2016 1 次提交
-
-
由 Christophe Leroy 提交于
On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined as 0 and _PAGE_RO has to be set when a page is not writable _PAGE_RO is defined by default in pte-common.h, however BOOK3S/64 doesn't include that file so _PAGE_RO has to be defined explicitly in book3s/64/pgtable.h Fixes: a7b9f671 ("powerpc32: adds handling of _PAGE_RO") Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 7月, 2016 1 次提交
-
-
由 Sukadev Bhattiprolu 提交于
__hugepte_alloc() uses kmem_cache_zalloc() to allocate a zeroed PTE and proceeds to use the newly allocated PTE. Add a memory barrier to make sure that the other CPUs see a properly initialized PTE. Based on a fix suggested by James Dykman. Reported-by: NJames Dykman <jdykman@us.ibm.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NSukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Tested-by: NJames Dykman <jdykman@us.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 25 6月, 2016 1 次提交
-
-
由 Michal Hocko 提交于
__GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. {pud,pmd}_alloc_one are allocating from {PGT,PUD}_CACHE initialized in pgtable_cache_init which doesn't have larger than sizeof(void *) << 12 size and that fits into !costly allocation request size. PGALLOC_GFP is used only in radix__pgd_alloc which uses either order-0 or order-4 requests. The first one doesn't need the flag while the second does. Drop __GFP_REPEAT from PGALLOC_GFP and add it for the order-4 one. This means that this flag has never been actually useful here because it has always been used only for PAGE_ALLOC_COSTLY requests. Link: http://lkml.kernel.org/r/1464599699-30131-12-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 5月, 2016 1 次提交
-
-
由 Vaishali Thakkar 提交于
Update setup_hugepagesz() to call hugetlb_bad_size() when unsupported hugepage size is found. Signed-off-by: NVaishali Thakkar <vaishali.thakkar@oracle.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Dominik Dingel <dingel@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 5月, 2016 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
Radix doesn't use the slice framework to find the page size. Hence use vma to find the page size. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 01 5月, 2016 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
_PAGE_PRIVILEGED means the page can be accessed only by the kernel. This is done to keep pte bits similar to PowerISA 3.0 Radix PTE format. User pages are now marked by clearing _PAGE_PRIVILEGED bit. Previously we allowed the kernel to have a privileged page in the lower address range (USER_REGION). With this patch such access is denied. We also prevent a kernel access to a non-privileged page in higher address range (ie, REGION_ID != 0). Both the above access scenarios should never happen. Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jeremy Kerr <jk@ozlabs.org> Cc: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Acked-by: NIan Munsie <imunsie@au1.ibm.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
This splits the _PAGE_RW bit into _PAGE_READ and _PAGE_WRITE. It also removes the dependency on _PAGE_USER for implying read only. Few things to note here is that, we have read implied with write and execute permission. Hence we should always find _PAGE_READ set on hash pte fault. We still can't switch PROT_NONE to !(_PAGE_RWX). Auto numa depends on marking a prot none pte _PAGE_WRITE. (For more details look at b191f9b1 "mm: numa: preserve PTE write permissions across a NUMA hinting fault") Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jeremy Kerr <jk@ozlabs.org> Cc: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Acked-by: NIan Munsie <imunsie@au1.ibm.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 29 3月, 2016 1 次提交
-
-
由 Sebastian Siewior 提交于
hugepd_free() used __get_cpu_var() once. Nothing ensured that the code accessing the variable did not migrate from one CPU to another and soon this was noticed by Tiejun Chen in 94b09d75 ("powerpc/hugetlb: Replace __get_cpu_var with get_cpu_var"). So we had it fixed. Christoph Lameter was doing his __get_cpu_var() replaces and forgot PowerPC. Then he noticed this and sent his fixed up batch again which got applied as 69111bac ("powerpc: Replace __get_cpu_var uses"). The careful reader will noticed one little detail: get_cpu_var() got replaced with this_cpu_ptr(). So now we have a put_cpu_var() which does a preempt_enable() and nothing that does preempt_disable() so we underflow the preempt counter. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christoph Lameter <cl@linux.com> Cc: stable@vger.kernel.org Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 29 2月, 2016 1 次提交
-
-
由 Paul Mackerras 提交于
This changes the Linux page tables to store physical addresses rather than kernel virtual addresses in the upper levels of the tree (pgd, pud and pmd) for 64-bit Book 3S machines. This also changes the hugepd pointers used to implement hugepages when the base page size is 4k to store physical addresses rather than virtual addresses (again just for 64-bit Book3S machines). This frees up some high order bits, and will be needed with PowerISA v3.0 machines which read the page table tree in hardware in radix mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 1月, 2016 2 次提交
-
-
由 Kirill A. Shutemov 提交于
With new refcounting we don't need to mark PMDs splitting. Let's drop code to handle this. pmdp_splitting_flush() is not needed too: on splitting PMD we will do pmdp_clear_flush() + set_pte_at(). pmdp_clear_flush() will do IPI as needed for fast_gup. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 12月, 2015 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
For a pte entry we will have _PAGE_PTE set. Our pte page address have a minimum alignment requirement of HUGEPD_SHIFT_MASK + 1. We use the lower 7 bits to indicate hugepd. ie. For pmd and pgd we can find: 1) _PAGE_PTE set pte -> indicate PTE 2) bits [2..6] non zero -> indicate hugepd. They also encode the size. We skip bit 1 (_PAGE_PRESENT). 3) othewise pointer to next table. Acked-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
W.r.t hugetlb, we support two format for pmd. With book3s_64 and 64K linux page size, we can have pte at the pmd level. Hence we don't need to support hugepd there. For everything else hugepd is supported and pmd_huge is (0). Acked-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 12 10月, 2015 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
We need to properly identify whether a hugepage is an explicit or a transparent hugepage in follow_huge_addr(). We used to depend on hugepage shift argument to do that. But in some case that can result in wrong results. For ex: On finding a transparent hugepage we set hugepage shift to PMD_SHIFT. But we can end up clearing the thp pte, via pmdp_huge_get_and_clear. We do prevent reusing the pfn page via the usage of kick_all_cpus_sync(). But that happens after we updated the pte to 0. Hence in follow_huge_addr() we can find hugepage shift set, but transparent huge page check fail for a thp pte. NOTE: We fixed a variant of this race against thp split in commit 691e95fd ("powerpc/mm/thp: Make page table walk safe against thp split/collapse") Without this patch, we may hit the BUG_ON(flags & FOLL_GET) in follow_page_mask occasionally. In the long term, we may want to switch ppc64 64k page size config to enable CONFIG_ARCH_WANT_GENERAL_HUGETLB Reported-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
After commit e2b3d202 ("powerpc: Switch 16GB and 16MB explicit hugepages to a different page table format"), we don't need to support is_hugepd() for 64K page size. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 18 8月, 2015 1 次提交
-
-
由 Michael Ellerman 提交于
Back in the olden days we added support for using 64K pages to map the SPU (Synergistic Processing Unit) local store on Cell, when the main kernel was using 4K pages. This was useful at the time because distros were using 4K pages, but using 64K pages on the SPUs could reduce TLB pressure there. However these days the number of Cell users is approaching zero, and supporting this option adds unpleasant complexity to the memory management code. So drop the option, CONFIG_SPU_FS_64K_LS, and all related code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NJeremy Kerr <jk@ozlabs.org>
-
- 25 6月, 2015 1 次提交
-
-
由 Zhang Zhen 提交于
Currently we have many duplicates in definitions of huge_pmd_unshare. In all architectures this function just returns 0 when CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N. This patch puts the default implementation in mm/hugetlb.c and lets these architectures use the common code. Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: David Rientjes <rientjes@google.com> Cc: James Yang <James.Yang@freescale.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 6月, 2015 1 次提交
-
-
由 Paul Gortmaker 提交于
The hugetlbpage.o is obj-y (always built in). It will never be modular, so using module_init as an alias for __initcall is somewhat misleading. Fix this up now, so that we can relocate module_init from init.h into module.h in the future. If we don't do this, we'd have to add module.h to obviously non-modular code, and that would be a worse thing. Note that direct use of __initcall is discouraged, vs. one of the priority categorized subgroups. As __initcall gets mapped onto device_initcall, our use of arch_initcall (which makes sense for arch code) will thus change this registration from level 6-device to level 3-arch (i.e. slightly earlier). However no observable impact of that small difference has been observed during testing, or is expected. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 20 5月, 2015 1 次提交
-
-
由 Luis R. Rodriguez 提交于
This adds an extra argument onto parse_params() to be used as a way to make the unused callback a bit more useful and generic by allowing the caller to pass on a data structure of its choice. An example use case is to allow us to easily make module parameters for every module which we will do next. @ parse @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ extern char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )); @ parse_mod @ identifier name, args, params, num, level_min, level_max; identifier unknown, param, val, doing; type s16; @@ char *parse_args(const char *name, char *args, const struct kernel_param *params, unsigned num, s16 level_min, s16 level_max, + void *arg, int (*unknown)(char *param, char *val, const char *doing + , void *arg )) { ... } @ parse_args_found @ expression R, E1, E2, E3, E4, E5, E6; identifier func; @@ ( R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | R = parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, &func); | parse_args(E1, E2, E3, E4, E5, E6, + NULL, NULL); ) @ parse_args_unused depends on parse_args_found @ identifier parse_args_found.func; @@ int func(char *param, char *val, const char *unused + , void *arg ) { ... } @ mod_unused depends on parse_args_found @ identifier parse_args_found.func; expression A1, A2, A3; @@ - func(A1, A2, A3); + func(A1, A2, A3, NULL); Generated-by: Coccinelle SmPL Cc: cocci@systeme.lip6.fr Cc: Tejun Heo <tj@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Christoph Hellwig <hch@infradead.org> Cc: Felipe Contreras <felipe.contreras@gmail.com> Cc: Ewan Milne <emilne@redhat.com> Cc: Jean Delvare <jdelvare@suse.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Jani Nikula <jani.nikula@intel.com> Cc: linux-kernel@vger.kernel.org Reviewed-by: NTejun Heo <tj@kernel.org> Acked-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NLuis R. Rodriguez <mcgrof@suse.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 12 5月, 2015 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
We need to check whether pte is present in follow_huge_addr() and properly return NULL if mapping is not present. Also use READ_ONCE when dereferencing pte_t address. Without this patch, we may wrongly return a zero pfn page in follow_huge_addr(). Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 4月, 2015 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
For THP that is marked trans splitting, we return the pte. This require the callers to handle the pmd_trans_splitting scenario, if they care. All the current callers are either looking at pfn or write_ok, hence we don't need to update them. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
We can disable a THP split or a hugepage collapse by disabling irq. We do send IPI to all the cpus in the early part of split/collapse, and disabling local irq ensure we don't make progress with split/collapse. If the THP is getting split we return NULL from find_linux_pte_or_hugepte(). For all the current callers it should be ok. We need to be careful if we want to use returned pte_t pointer outside the irq disabled region. W.r.t to THP split, the pfn remains the same, but then a hugepage collapse will result in a pfn change. There are few steps we can take to avoid a hugepage collapse.One way is to take page reference inside the irq disable region. Other option is to take mmap_sem so that a parallel collapse will not happen. We can also disable collapse by taking pmd_lock. Another method used by kvm subsystem is to check whether we had a mmu_notifer update in between using mmu_notifier_retry(). Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 4月, 2015 1 次提交
-
-
由 Scott Wood 提交于
Commit dc6c9a35 ("mm: account pmd page tables to the process") added a counter that is incremented whenever a PMD is allocated and decremented whenever a PMD is freed. For hugepages on PPC, common code is used to allocated PMDs, but arch-specific code is used to free PMDs. This results in kernel output such as "BUG: non-zero nr_pmds on freeing mm: 1" when using hugepages. Update the PPC hugepage PMD freeing code to decrement the count, just as the above commit did for free_pmd_range(). Fixes: dc6c9a35 ("mm: account pmd page tables to the process") Signed-off-by: NScott Wood <scottwood@freescale.com> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: stable@vger.kernel.org # 4.0.x
-
- 10 4月, 2015 1 次提交
-
-
由 Michael Ellerman 提交于
Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Fix the 32-bit code also] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 12 2月, 2015 1 次提交
-
-
由 Naoya Horiguchi 提交于
Currently we have many duplicates in definitions around follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this patch tries to remove the m. The basic idea is to put the default implementation for these functions in mm/hugetlb.c as weak symbols (regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement arch-specific code only when the arch needs it. For follow_huge_addr(), only powerpc and ia64 have their own implementation, and in all other architectures this function just returns ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as default. As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to always return 0 in your architecture (like in ia64 or sparc,) it's never called (the callsite is optimized away) no matter how implemented it is. So in such architectures, we don't need arch-specific implementation. In some architecture (like mips, s390 and tile,) their current arch-specific follow_huge_(pmd|pud)() are effectively identical with the common code, so this patch lets these architecture use the common code. One exception is metag, where pmd_huge() could return non-zero but it expects follow_huge_pmd() to always return NULL. This means that we need arch-specific implementation which returns NULL. This behavior looks strange to me (because non-zero pmd_huge() implies that the architecture supports PMD-based hugepage, so follow_huge_pmd() can/should return some relevant value,) but that's beyond this cleanup patch, so let's keep it. Justification of non-trivial changes: - in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE is true when follow_huge_pmd() can be called (note that pmd_huge() has the same check and always returns 0 for !MACHINE_HAS_HPAGE.) - in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common code. This patch forces these archs use PMD_MASK, but it's OK because they are identical in both archs. In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20. In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but PTE_ORDER is always 0, so these are identical. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 1月, 2015 1 次提交
-
-
由 Christian Borntraeger 提交于
ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145) Change the ppc/hugetlbfs code to replace ACCESS_ONCE with READ_ONCE. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 02 12月, 2014 1 次提交
-
-
由 James Yang 提交于
Limit the number of gigantic hugepages specified by the hugepages= parameter to MAX_NUMBER_GPAGES. Signed-off-by: NJames Yang <James.Yang@freescale.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 19 11月, 2014 1 次提交
-
-
由 Michael Ellerman 提交于
Although we are now selecting NO_BOOTMEM, we still have some traces of bootmem lying around. That is because even with NO_BOOTMEM there is still a shim that converts bootmem calls into memblock calls, but ultimately we want to remove all traces of bootmem. Most of the patch is conversions from alloc_bootmem() to memblock_virt_alloc(). In general a call such as: p = (struct foo *)alloc_bootmem(x); Becomes: p = memblock_virt_alloc(x, 0); We don't need the cast because memblock_virt_alloc() returns a void *. The alignment value of zero tells memblock to use the default alignment, which is SMP_CACHE_BYTES, the same value alloc_bootmem() uses. We remove a number of NULL checks on the result of memblock_virt_alloc(). That is because memblock_virt_alloc() will panic if it can't allocate, in exactly the same way as alloc_bootmem(), so the NULL checks are and always have been redundant. The memory returned by memblock_virt_alloc() is already zeroed, so we remove several memsets of the result of memblock_virt_alloc(). Finally we convert a few uses of __alloc_bootmem(x, y, MAX_DMA_ADDRESS) to just plain memblock_virt_alloc(). We don't use memblock_alloc_base() because MAX_DMA_ADDRESS is ~0ul on powerpc, so limiting the allocation to that is pointless, 16XB ought to be enough for anyone. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 17 11月, 2014 1 次提交
-
-
由 Will Deacon 提交于
On architectures with hardware broadcasting of TLB invalidation messages , it makes sense to reduce the range of the mmu_gather structure when unmapping page ranges based on the dirty address information passed to tlb_remove_tlb_entry. arm64 already does this by directly manipulating the start/end fields of the gather structure, but this confuses the generic code which does not expect these fields to change and can end up calculating invalid, negative ranges when forcing a flush in zap_pte_range. This patch moves the minimal range calculation out of the arm64 code and into the generic implementation, simplifying zap_pte_range in the process (which no longer needs to care about start/end, since they will point to the appropriate ranges already). With the range being tracked by core code, the need_flush flag is dropped in favour of checking that the end of the range has actually been set. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Cc: Michal Simek <monstr@monstr.eu> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 14 11月, 2014 2 次提交
-
-
由 Aneesh Kumar K.V 提交于
This patch switch the ppc arch to use the generic RCU based gup implementation. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
由 Aneesh Kumar K.V 提交于
This patch add documentation and missing accessors. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 10 11月, 2014 1 次提交
-
-
由 Anton Blanchard 提交于
Now bootmem is gone from powerpc we can remove comments mentioning it. Signed-off-by: NAnton Blanchard <anton@samba.org> Tested-by: NEmil Medve <Emilian.Medve@Freescale.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 03 11月, 2014 1 次提交
-
-
由 Christoph Lameter 提交于
This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: NChristoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 27 8月, 2014 2 次提交
-
-
由 Tejun Heo 提交于
This reverts commit 5828f666 due to build failure after merging with pending powerpc changes. Link: http://lkml.kernel.org/g/20140827142243.6277eaff@canb.auug.org.auSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NStephen Rothwell <sfr@canb.auug.org.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Christoph Lameter 提交于
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) tj: Folded a fix patch. http://lkml.kernel.org/g/alpine.DEB.2.11.1408172143020.9652@gentwo.org Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-