- 11 11月, 2013 4 次提交
-
-
由 Kent Overstreet 提交于
Whoops. Signed-off-by: NKent Overstreet <kmo@daterainc.com>
-
由 Kent Overstreet 提交于
The old scanning-by-stripe code burned too much CPU, this should be better. Signed-off-by: NKent Overstreet <kmo@daterainc.com>
-
由 Kent Overstreet 提交于
This simplifies the writeback flow control quite a bit - previously, it was conceptually two coroutines, refill_dirty() and read_dirty(). This makes the code quite a bit more straightforward. Signed-off-by: NKent Overstreet <kmo@daterainc.com>
-
由 Kent Overstreet 提交于
Originally I got this right... except that the divides didn't use do_div(), which broke 32 bit kernels. When I went to fix that, I forgot that the raid stripe size usually isn't a power of two... doh Signed-off-by: NKent Overstreet <kmo@daterainc.com>
-
- 27 6月, 2013 2 次提交
-
-
由 Kent Overstreet 提交于
Now that we're tracking dirty data per stripe, we can add two optimizations for raid5/6: * If a stripe is already dirty, force writes to that stripe to writeback mode - to help build up full stripes of dirty data * When flushing dirty data, preferentially write out full stripes first if there are any. Signed-off-by: NKent Overstreet <koverstreet@google.com>
-
由 Kent Overstreet 提交于
To make background writeback aware of raid5/6 stripes, we first need to track the amount of dirty data within each stripe - we do this by breaking up the existing sectors_dirty into per stripe atomic_ts Signed-off-by: NKent Overstreet <koverstreet@google.com>
-