- 10 9月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
This patch converts md to support REQ_FLUSH/FUA instead of now deprecated REQ_HARDBARRIER. In the core part (md.c), the following changes are notable. * Unlike REQ_HARDBARRIER, REQ_FLUSH/FUA don't interfere with processing of other requests and thus there is no reason to mark the queue congested while FLUSH/FUA is in progress. * REQ_FLUSH/FUA failures are final and its users don't need retry logic. Retry logic is removed. * Preflush needs to be issued to all member devices but FUA writes can be handled the same way as other writes - their processing can be deferred to request_queue of member devices. md_barrier_request() is renamed to md_flush_request() and simplified accordingly. For linear, raid0 and multipath, the core changes are enough. raid1, 5 and 10 need the following conversions. * raid1: Handling of FLUSH/FUA bio's can simply be deferred to request_queues of member devices. Barrier related logic removed. * raid5: Queue draining logic dropped. FUA bit is propagated through biodrain and stripe resconstruction such that all the updated parts of the stripe are written out with FUA writes if any of the dirtying writes was FUA. preread_active_stripes handling in make_request() is updated as suggested by Neil Brown. * raid10: FUA bit needs to be propagated to write clones. linear, raid0, 1, 5 and 10 tested. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NNeil Brown <neilb@suse.de> Signed-off-by: NJens Axboe <jaxboe@fusionio.com>
-
- 26 7月, 2010 4 次提交
-
-
由 NeilBrown 提交于
Also remove remaining accesses to ->queue and ->gendisk when ->queue is NULL (As it is in a DM target). Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
md/raid5 uses the plugging infrastructure provided by the block layer and 'struct request_queue'. However when we plug raid5 under dm there is no request queue so we cannot use that. So create a similar infrastructure that is much lighter weight and use it for raid5. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
the dm module will need this for dm-raid45. Also only access ->queue->backing_dev_info->congested_fn if ->queue actually exists. It won't in a dm target. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We will shortly allow md devices with no gendisk (they are attached to a dm-target instead). That will cause mdname() to return 'mdX'. There is one place where mdname really needs to be unique: when creating the name for a slab cache. So in that case, if there is no gendisk, you the address of the mddev formatted in HEX to provide a unique name. Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 21 7月, 2010 1 次提交
-
-
由 NeilBrown 提交于
Separate the actual 'change' code from the sysfs interface so that it can eventually be called internally. Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 17 2月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
Add __percpu sparse annotations to places which didn't make it in one of the previous patches. All converions are trivial. These annotations are to make sparse consider percpu variables to be in a different address space and warn if accessed without going through percpu accessors. This patch doesn't affect normal builds. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NBorislav Petkov <borislav.petkov@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Len Brown <lenb@kernel.org> Cc: Neil Brown <neilb@suse.de>
-
- 16 10月, 2009 2 次提交
-
-
由 NeilBrown 提交于
Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
The percpu conversion allowed a straightforward handoff of stripe processing to the async subsytem that initially showed some modest gains (+4%). However, this model is too simplistic and leads to stripes bouncing between raid5d and the async thread pool for every invocation of handle_stripe(). As reported by Holger this can fall into a pathological situation severely impacting throughput (6x performance loss). By downleveling the parallelism to raid_run_ops the pathological stripe_head bouncing is eliminated. This version still exhibits an average 11% throughput loss for: mdadm --create /dev/md0 /dev/sd[b-q] -n 16 -l 6 echo 1024 > /sys/block/md0/md/stripe_cache_size dd if=/dev/zero of=/dev/md0 bs=1024k count=2048 ...but the results are at least stable and can be used as a base for further multicore experimentation. Reported-by: NHolger Kiehl <Holger.Kiehl@dwd.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 30 8月, 2009 4 次提交
-
-
由 Dan Williams 提交于
[ Based on an original patch by Yuri Tikhonov ] The raid_run_ops routine uses the asynchronous offload api and the stripe_operations member of a stripe_head to carry out xor+pq+copy operations asynchronously, outside the lock. The operations performed by RAID-6 are the same as in the RAID-5 case except for no support of STRIPE_OP_PREXOR operations. All the others are supported: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate missing blocks (1 or 2) in the cache from the other blocks STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_RECONSTRUCT - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct The flow is the same as in the RAID-5 case, and reuses some routines, namely: 1/ ops_complete_postxor (renamed to ops_complete_reconstruct) 2/ ops_complete_compute (updated to set up to 2 targets uptodate) 3/ ops_run_check (renamed to ops_run_check_p for xor parity checks) [neilb@suse.de: fixes to get it to pass mdadm regression suite] Reviewed-by: NAndre Noll <maan@systemlinux.org> Signed-off-by: NYuri Tikhonov <yur@emcraft.com> Signed-off-by: NIlya Yanok <yanok@emcraft.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Replace the flat zero_sum_result with a collection of flags to contain the P (xor) zero-sum result, and the soon to be utilized Q (raid6 reed solomon syndrome) zero-sum result. Use the SUM_CHECK_ namespace instead of DMA_ since these flags will be used on non-dma-zero-sum enabled platforms. Reviewed-by: NAndre Noll <maan@systemlinux.org> Acked-by: NMaciej Sosnowski <maciej.sosnowski@intel.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Use percpu memory rather than stack for storing the buffer lists used in parity calculations. Include space for dma address conversions and pass that to async_tx via the async_submit_ctl.scribble pointer. [ Impact: move memory pressure from stack to heap ] Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
In preparation for asynchronous handling of raid6 operations move the spare page to a percpu allocation to allow multiple simultaneous synchronous raid6 recovery operations. Make this allocation cpu hotplug aware to maximize allocation efficiency. Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 18 6月, 2009 1 次提交
-
-
由 Andre Noll 提交于
This kills some more shifts. Signed-off-by: NAndre Noll <maan@systemlinux.org> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 16 6月, 2009 1 次提交
-
-
由 NeilBrown 提交于
Having a macro just to cast a void* isn't really helpful. I would must rather see that we are simply de-referencing ->private, than have to know what the macro does. So open code the macro everywhere and remove the pointless cast. Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 31 3月, 2009 13 次提交
-
-
由 NeilBrown 提交于
We currently update the metadata : 1/ every 3Megabytes 2/ When the place we will write new-layout data to is recorded in the metadata as still containing old-layout data. Rule one exists to avoid having to re-do too much reshaping in the face of a crash/restart. So it should really be time based rather than size based. So change it to "every 10 seconds". Rule two turns out to be too harsh when restriping an array 'in-place', as in that case the metadata much be updates for every stripe. For the in-place update, it can only possibly be safe from a crash if some user-space program data a backup of every e.g. few hundred stripes before allowing them to be reshaped. In that case, the constant metadata update is pointless. So only update the metadata if the new metadata will report that the end of the 'old-layout' data is beyond where we are currently writing 'new-layout' data. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Add prev_algo to raid5_conf_t along the same lines as prev_chunk and previous_raid_disks. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Add "prev_chunk" to raid5_conf_t, similar to "previous_raid_disks", to remember what the chunk size was before the reshape that is currently underway. This seems like duplication with "chunk_size" and "new_chunk" in mddev_t, and to some extent it is, but there are differences. The values in mddev_t are always defined and often the same. The prev* values are only defined if a reshape is underway. Also (and more significantly) the raid5_conf_t values will be changed at the same time (inside an appropriate lock) that the reshape is started by setting reshape_position. In contrast, the new_chunk value is set when the sysfs file is written which could be well before the reshape starts. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
During a raid5 reshape, we have some stripes in the cache that are 'before' the reshape (and are still to be processed) and some that are 'after'. They are currently differentiated by having different ->disks values as the only reshape current supported involves changing the number of disks. However we will soon support reshapes that do not change the number of disks (chunk parity or chunk size). So make the difference more explicit with a 'generation' number. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
When reducing the number of devices in a raid4/5/6, the reshape process has to start at the end of the array and work down to the beginning. So we need to handle expand_progress and expand_lo differently. This patch renames "expand_progress" and "expand_lo" to avoid the implication that anything is getting bigger (expand->reshape) and every place they are used, we make sure that they are used the right way depending on whether delta_disks is positive or negative. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We now have this value in stripe_head so we don't need to duplicate it. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
Move the raid6 data processing routines into a standalone module (raid6_pq) to prepare them to be called from async_tx wrappers and other non-md drivers/modules. This precludes a circular dependency of raid456 needing the async modules for data processing while those modules in turn depend on raid456 for the base level synchronous raid6 routines. To support this move: 1/ The exportable definitions in raid6.h move to include/linux/raid/pq.h 2/ The raid6_call, recovery calls, and table symbols are exported 3/ Extra #ifdef __KERNEL__ statements to enable the userspace raid6test to compile Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
.. so that the code to create the private data structures is separate. This will help with future code to change the level of an active array. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
DDF requires RAID6 calculations over different devices in a different order. For md/raid6, we calculate over just the data devices, starting immediately after the 'Q' block. For ddf/raid6 we calculate over all devices, using zeros in place of the P and Q blocks. This requires unfortunately complex loops... Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
DDF uses different layouts for P and Q blocks than current md/raid6 so add those that are missing. Also add support for RAID6 layouts that are identical to various raid5 layouts with the simple addition of one device to hold all of the 'Q' blocks. Finally add 'raid5' layouts to match raid4. These last to will allow online level conversion. Note that this does not provide correct support for DDF/raid6 yet as the order in which data blocks are summed to produce the Q block is significant and different between current md code and DDF requirements. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Code currently assumes that the devices in a raid6 stripe are 0 1 ... N-1 P Q in some rotated order. We will shortly add new layouts in which this strict pattern is broken. So remove this expectation. We still assume that the data disks are roughly in-order. However P and Q can be inserted anywhere within that order. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This makes the includes more explicit, and is preparation for moving md_k.h to drivers/md/md.h Remove include/raid/md.h as its only remaining use was to #include other files. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Christoph Hellwig 提交于
Move the headers with the local structures for the disciplines and bitmap.h into drivers/md/ so that they are more easily grepable for hacking and not far away. md.h is left where it is for now as there are some uses from the outside. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 28 6月, 2008 5 次提交
-
-
由 Dan Williams 提交于
From: Dan Williams <dan.j.williams@intel.com> Currently ops_run_biodrain and other locations have extra logic to determine which blocks are processed in the prexor and non-prexor cases. This can be eliminated if handle_write_operations5 flags the blocks to be processed in all cases via R5_Wantdrain. The presence of the prexor operation is tracked in sh->reconstruct_state. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de>
-
由 Dan Williams 提交于
From: Dan Williams <dan.j.williams@intel.com> Track the state of reconstruct operations (recalculating the parity block usually due to incoming writes, or as part of array expansion) Reduces the scope of the STRIPE_OP_{BIODRAIN,PREXOR,POSTXOR} flags to only tracking whether a reconstruct operation has been requested via the ops_request field of struct stripe_head_state. This is the final step in the removal of ops.{pending,ack,complete,count}, i.e. the STRIPE_OP_{BIODRAIN,PREXOR,POSTXOR} flags only request an operation and do not track the state of the operation. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de>
-
由 Dan Williams 提交于
From: Dan Williams <dan.j.williams@intel.com> The STRIPE_OP_* flags record the state of stripe operations which are performed outside the stripe lock. Their use in indicating which operations need to be run is straightforward; however, interpolating what the next state of the stripe should be based on a given combination of these flags is not straightforward, and has led to bugs. An easier to read implementation with minimal degrees of freedom is needed. Towards this goal, this patch introduces explicit states to replace what was previously interpolated from the STRIPE_OP_* flags. For now this only converts the handle_parity_checks5 path, removing a user of the ops.{pending,ack,complete,count} fields of struct stripe_operations. This conversion also found a remaining issue with the current code. There is a small window for a drive to fail between when we schedule a repair and when the parity calculation for that repair completes. When this happens we will writeback to 'failed_num' when we really want to write back to 'pd_idx'. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de>
-
由 Dan Williams 提交于
From: Dan Williams <dan.j.williams@intel.com> The R5_Want{Read,Write} flags already gate i/o. So, this flag is superfluous and we can unconditionally call ops_run_io(). Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de>
-
由 Dan Williams 提交于
From: Dan Williams <dan.j.williams@intel.com> This micro-optimization allowed the raid code to skip a re-read of the parity block after checking parity. It took advantage of the fact that xor-offload-engines have their own internal result buffer and can check parity without writing to memory. Remove it for the following reasons: 1/ It is a layering violation for MD to need to manage the DMA and non-DMA paths within async_xor_zero_sum 2/ Bad precedent to toggle the 'ops' flags outside the lock 3/ Hard to realize a performance gain as reads will not need an updated parity block and writes will dirty it anyways. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de>
-
- 28 4月, 2008 1 次提交
-
-
由 Dan Williams 提交于
Improve write performance by preventing the delayed_list from dumping all its stripes onto the handle_list in one shot. Delayed stripes are now further delayed by being held on the 'hold_list'. The 'hold_list' is bypassed when: * a STRIPE_IO_STARTED stripe is found at the head of 'handle_list' * 'handle_list' is empty and i/o is being done to satisfy full stripe-width write requests * 'bypass_count' is less than 'bypass_threshold'. By default the threshold is 1, i.e. every other stripe handled is a preread stripe provided the top two conditions are false. Benchmark data: System: 2x Xeon 5150, 4x SATA, mem=1GB Baseline: 2.6.24-rc7 Configuration: mdadm --create /dev/md0 /dev/sd[b-e] -n 4 -l 5 --assume-clean Test1: dd if=/dev/zero of=/dev/md0 bs=1024k count=2048 * patched: +33% (stripe_cache_size = 256), +25% (stripe_cache_size = 512) Test2: tiobench --size 2048 --numruns 5 --block 4096 --block 131072 (XFS) * patched: +13% * patched + preread_bypass_threshold = 0: +37% Changes since v1: * reduce bypass_threshold from (chunk_size / sectors_per_chunk) to (1) and make it configurable. This defaults to fairness and modest performance gains out of the box. Changes since v2: * [neilb@suse.de]: kill STRIPE_PRIO_HI and preread_needed as they are not necessary, the important change was clearing STRIPE_DELAYED in add_stripe_bio and this has been moved out to make_request for the hang fix. * [neilb@suse.de]: simplify get_priority_stripe * [dan.j.williams@intel.com]: reset the bypass_count when ->hold_list is sampled empty (+11%) * [dan.j.williams@intel.com]: decrement the bypass_count at the detection of stripes being naturally promoted off of hold_list +2%. Note, resetting bypass_count instead of decrementing on these events yields +4% but that is probably too aggressive. Changes since v3: * cosmetic fixups Tested-by: NJames W. Laferriere <babydr@baby-dragons.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com> Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 7月, 2007 4 次提交
-
-
由 Dan Williams 提交于
When a read bio is attached to the stripe and the corresponding block is marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy the data from the stripe cache to the bio buffer. handle_stripe flags the blocks to be operated on with the R5_Wantfill flag. If new read requests arrive while raid5_run_ops is running they will not be handled until handle_stripe is scheduled to run again. Changelog: * cleanup to_read and to_fill accounting * do not fail reads that have reached the cache Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
handle_stripe will compute a block when a backing disk has failed, or when it determines it can save a disk read by computing the block from all the other up-to-date blocks. Previously a block would be computed under the lock and subsequent logic in handle_stripe could use the newly up-to-date block. With the raid5_run_ops implementation the compute operation is carried out a later time outside the lock. To preserve the old functionality we take advantage of the dependency chain feature of async_tx to flag the block as R5_Wantcompute and then let other parts of handle_stripe operate on the block as if it were up-to-date. raid5_run_ops guarantees that the block will be ready before it is used in another operation. However, this only works in cases where the compute and the dependent operation are scheduled at the same time. If a previous call to handle_stripe sets the R5_Wantcompute flag there is no facility to pass the async_tx dependency chain across successive calls to raid5_run_ops. The req_compute variable protects against this case. Changelog: * remove the req_compute BUG_ON Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
handle_stripe5 and handle_stripe6 have very deep logic paths handling the various states of a stripe_head. By introducing the 'stripe_head_state' and 'r6_state' objects, large portions of the logic can be moved to sub-routines. 'struct stripe_head_state' consumes all of the automatic variables that previously stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6 specific variables like p_failed and q_failed. One of the nice side effects of the 'stripe_head_state' change is that it allows for further reductions in code duplication between raid5 and raid6. The following new routines are shared between raid5 and raid6: handle_completed_write_requests handle_requests_to_failed_array handle_stripe_expansion Changes: * v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path * v3: removed the unused 'dirty' field from struct stripe_head_state * v3: coalesced open coded bi_end_io routines into return_io() Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
- 11 12月, 2006 1 次提交
-
-
由 Raz Ben-Jehuda(caro) 提交于
If a bypass-the-cache read fails, we simply try again through the cache. If it fails again it will trigger normal recovery precedures. update 1: From: NeilBrown <neilb@suse.de> 1/ chunk_aligned_read and retry_aligned_read assume that data_disks == raid_disks - 1 which is not true for raid6. So when an aligned read request bypasses the cache, we can get the wrong data. 2/ The cloned bio is being used-after-free in raid5_align_endio (to test BIO_UPTODATE). 3/ We forgot to add rdev->data_offset when submitting a bio for aligned-read 4/ clone_bio calls blk_recount_segments and then we change bi_bdev, so we need to invalidate the segment counts. 5/ We don't de-reference the rdev when the read completes. This means we need to record the rdev to so it is still available in the end_io routine. Fortunately bi_next in the original bio is unused at this point so we can stuff it in there. 6/ We leak a cloned bio if the target rdev is not usable. From: NeilBrown <neilb@suse.de> update 2: 1/ When aligned requests fail (read error) they need to be retried via the normal method (stripe cache). As we cannot be sure that we can process a single read in one go (we may not be able to allocate all the stripes needed) we store a bio-being-retried and a list of bioes-that-still-need-to-be-retried. When find a bio that needs to be retried, we should add it to the list, not to single-bio... 2/ We were never incrementing 'scnt' when resubmitting failed aligned requests. [akpm@osdl.org: build fix] Signed-off-by: NNeil Brown <neilb@suse.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 08 12月, 2006 1 次提交
-
-
由 Christoph Lameter 提交于
Replace all uses of kmem_cache_t with struct kmem_cache. The patch was generated using the following script: #!/bin/sh # # Replace one string by another in all the kernel sources. # set -e for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do quilt add $file sed -e "1,\$s/$1/$2/g" $file >/tmp/$$ mv /tmp/$$ $file quilt refresh done The script was run like this sh replace kmem_cache_t "struct kmem_cache" Signed-off-by: NChristoph Lameter <clameter@sgi.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-