1. 08 3月, 2009 1 次提交
    • C
      x86: UV: remove uv_flush_tlb_others() WARN_ON · 3a450de1
      Cliff Wickman 提交于
      In uv_flush_tlb_others() (arch/x86/kernel/tlb_uv.c),
      the "WARN_ON(!in_atomic())" fails if CONFIG_PREEMPT is not enabled.
      
      And CONFIG_PREEMPT is not enabled by default in the distribution that
      most UV owners will use.
      
      We could #ifdef CONFIG_PREEMPT the warning, but that is not good form.
      And there seems to be no suitable fix to in_atomic() when CONFIG_PREMPT
      is not on.
      
      As Ingo commented:
      
        > and we have no proper primitive to test for atomicity. (mainly
        > because we dont know about atomicity on a non-preempt kernel)
      
      So we drop the WARN_ON.
      Signed-off-by: NCliff Wickman <cpw@sgi.com>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      3a450de1
  2. 06 3月, 2009 4 次提交
    • T
      x86, percpu: setup reserved percpu area for x86_64 · 6b19b0c2
      Tejun Heo 提交于
      Impact: fix relocation overflow during module load
      
      x86_64 uses 32bit relocations for symbol access and static percpu
      symbols whether in core or modules must be inside 2GB of the percpu
      segement base which the dynamic percpu allocator doesn't guarantee.
      This patch makes x86_64 reserve PERCPU_MODULE_RESERVE bytes in the
      first chunk so that module percpu areas are always allocated from the
      first chunk which is always inside the relocatable range.
      
      This problem exists for any percpu allocator but is easily triggered
      when using the embedding allocator because the second chunk is located
      beyond 2GB on it.
      
      This patch also changes the meaning of PERCPU_DYNAMIC_RESERVE such
      that it only indicates the size of the area to reserve for dynamic
      allocation as static and dynamic areas can be separate.  New
      PERCPU_DYNAMIC_RESERVED is increased by 4k for both 32 and 64bits as
      the reserved area separation eats away some allocatable space and
      having slightly more headroom (currently between 4 and 8k after
      minimal boot sans module area) makes sense for common case
      performance.
      
      x86_32 can address anywhere from anywhere and doesn't need reserving.
      
      Mike Galbraith first reported the problem first and bisected it to the
      embedding percpu allocator commit.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reported-by: NMike Galbraith <efault@gmx.de>
      Reported-by: NJaswinder Singh Rajput <jaswinder@kernel.org>
      6b19b0c2
    • T
      percpu, module: implement reserved allocation and use it for module percpu variables · edcb4639
      Tejun Heo 提交于
      Impact: add reserved allocation functionality and use it for module
      	percpu variables
      
      This patch implements reserved allocation from the first chunk.  When
      setting up the first chunk, arch can ask to set aside certain number
      of bytes right after the core static area which is available only
      through a separate reserved allocator.  This will be used primarily
      for module static percpu variables on architectures with limited
      relocation range to ensure that the module perpcu symbols are inside
      the relocatable range.
      
      If reserved area is requested, the first chunk becomes reserved and
      isn't available for regular allocation.  If the first chunk also
      includes piggy-back dynamic allocation area, a separate chunk mapping
      the same region is created to serve dynamic allocation.  The first one
      is called static first chunk and the second dynamic first chunk.
      Although they share the page map, their different area map
      initializations guarantee they serve disjoint areas according to their
      purposes.
      
      If arch doesn't setup reserved area, reserved allocation is handled
      like any other allocation.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      edcb4639
    • T
      x86: make embedding percpu allocator return excessive free space · 9a4f8a87
      Tejun Heo 提交于
      Impact: reduce unnecessary memory usage on certain configurations
      
      Embedding percpu allocator allocates unit_size *
      smp_num_possible_cpus() bytes consecutively and use it for the first
      chunk.  However, if the static area is small, this can result in
      excessive prellocated free space in the first chunk due to
      PCPU_MIN_UNIT_SIZE restriction.
      
      This patch makes embedding percpu allocator preallocate only what's
      necessary as described by PERPCU_DYNAMIC_RESERVE and return the
      leftover to the bootmem allocator.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      9a4f8a87
    • T
      percpu: use negative for auto for pcpu_setup_first_chunk() arguments · cafe8816
      Tejun Heo 提交于
      Impact: argument semantic cleanup
      
      In pcpu_setup_first_chunk(), zero @unit_size and @dyn_size meant
      auto-sizing.  It's okay for @unit_size as 0 doesn't make sense but 0
      dynamic reserve size is valid.  Alos, if arch @dyn_size is calculated
      from other parameters, it might end up passing in 0 @dyn_size and
      malfunction when the size is automatically adjusted.
      
      This patch makes both @unit_size and @dyn_size ssize_t and use -1 for
      auto sizing.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      cafe8816
  3. 03 3月, 2009 2 次提交
  4. 02 3月, 2009 9 次提交
  5. 01 3月, 2009 1 次提交
  6. 28 2月, 2009 5 次提交
  7. 26 2月, 2009 5 次提交
  8. 25 2月, 2009 10 次提交
  9. 24 2月, 2009 3 次提交
    • T
      x86: add remapping percpu first chunk allocator · 8ac83757
      Tejun Heo 提交于
      Impact: add better first percpu allocation for NUMA
      
      On NUMA, embedding allocator can't be used as different units can't be
      made to fall in the correct NUMA nodes.  To use large page mapping,
      each unit needs to be remapped.  However, percpu areas are usually
      much smaller than large page size and unused space hurts a lot as the
      number of cpus grow.  This allocator remaps large pages for each chunk
      but gives back unused part to the bootmem allocator making the large
      pages mapped twice.
      
      This adds slightly to the TLB pressure but is much better than using
      4k mappings while still being NUMA-friendly.
      
      Ingo suggested that this would be the correct approach for NUMA.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      8ac83757
    • T
      x86: add embedding percpu first chunk allocator · 89c92151
      Tejun Heo 提交于
      Impact: add better first percpu allocation for !NUMA
      
      On !NUMA, we can simply allocate contiguous memory and use it for the
      first chunk without mapping it into vmalloc area.  As the memory area
      is covered by the large page physical memory mapping, it allows the
      dynamic perpcu allocator to not add any TLB overhead for the static
      percpu area and whatever falls into the first chunk and the
      implementation is very simple too.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      89c92151
    • T
      x86: separate out setup_pcpu_4k() from setup_per_cpu_areas() · 5f5d8405
      Tejun Heo 提交于
      Impact: modularize percpu first chunk allocation
      
      x86 is gonna have a few different strategies for the first chunk
      allocation.  Modularize it by separating out the current allocation
      mechanism into pcpu_alloc_bootmem() and setup_pcpu_4k().
      Signed-off-by: NTejun Heo <tj@kernel.org>
      5f5d8405