- 16 10月, 2008 6 次提交
-
-
由 Thomas Gleixner 提交于
Revert the dynarray changes. They need more thought and polishing. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
This code is not ready, but we need to rip it out instead of rebasing as we would lose the APIC/IO_APIC unification otherwise. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Suresh Siddha 提交于
In irq_2_iommu_alloc() and set_irte_irq(), irq_to_desc or irq_2_iommu pointers may not be allocated. So use the routines which will allocate them if they are not already allocated. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
when CONFIG_HAVE_SPARSE_IRQ preallocate some irq_2_iommu entries, and use get_one_free_irq_2_iomm to get new one and link to irq_desc if needed. else will use dyn_array or static array. v2: <= nr_irqs fix Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Yinghai Lu 提交于
Signed-off-by: NYinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 12 7月, 2008 5 次提交
-
-
由 Suresh Siddha 提交于
MSI and MSI-X support for interrupt remapping infrastructure. MSI address register will be programmed with interrupt-remapping table entry(IRTE) index and the IRTE will contain information about the vector, cpu destination, etc. For MSI-X, all the IRTE's will be consecutively allocated in the table, and the address registers will contain the starting index to the block and the data register will contain the subindex with in that block. This also introduces a new irq_chip for cleaner irq migration (in the process context as opposed to the current irq migration in the context of an interrupt. interrupt-remapping infrastructure will help us achieve this). As MSI is edge triggered, irq migration is a simple atomic update(of vector and cpu destination) of IRTE and flushing the hardware cache. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
IO-APIC support in the presence of interrupt-remapping infrastructure. IO-APIC RTE will be programmed with interrupt-remapping table entry(IRTE) index and the IRTE will contain information about the vector, cpu destination, trigger mode etc, which traditionally was present in the IO-APIC RTE. Introduce a new irq_chip for cleaner irq migration (in the process context as opposed to the current irq migration in the context of an interrupt. interrupt-remapping infrastructure will help us achieve this cleanly). For edge triggered, irq migration is a simple atomic update(of vector and cpu destination) of IRTE and flush the hardware cache. For level triggered, we need to modify the io-apic RTE aswell with the update vector information, along with modifying IRTE with vector and cpu destination. So irq migration for level triggered is little bit more complex compared to edge triggered migration. But the good news is, we use the same algorithm for level triggered migration as we have today, only difference being, we now initiate the irq migration from process context instead of the interrupt context. In future, when we do a directed EOI (combined with cpu EOI broadcast suppression) to the IO-APIC, level triggered irq migration will also be as simple as edge triggered migration and we can do the irq migration with a simple atomic update to IO-APIC RTE. TBD: some tests/changes needed in the presence of fixup_irqs() for level triggered irq migration. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Routines handling the management of interrupt remapping table entries. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Interrupt remapping (part of Intel Virtualization Tech for directed I/O) infrastructure. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Parse the vt-d device scope structures to find the mapping between IO-APICs and the interrupt remapping hardware units. This will be used later for enabling Interrupt-remapping for IOAPIC devices. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-