1. 06 1月, 2009 1 次提交
  2. 18 12月, 2008 1 次提交
    • C
      Btrfs: shift all end_io work to thread pools · cad321ad
      Chris Mason 提交于
      bio_end_io for reads without checksumming on and btree writes were
      happening without using async thread pools.  This means the extent_io.c
      code had to use spin_lock_irq and friends on the rb tree locks for
      extent state.
      
      There were some irq safe vs unsafe lock inversions between the delallock
      lock and the extent state locks.  This patch gets rid of them by moving
      all end_io code into the thread pools.
      
      To avoid contention and deadlocks between the data end_io processing and the
      metadata end_io processing yet another thread pool is added to finish
      off metadata writes.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      cad321ad
  3. 12 12月, 2008 2 次提交
    • Y
      Btrfs: fix nodatasum handling in balancing code · 17d217fe
      Yan Zheng 提交于
      Checksums on data can be disabled by mount option, so it's
      possible some data extents don't have checksums or have
      invalid checksums. This causes trouble for data relocation.
      This patch contains following things to make data relocation
      work.
      
      1) make nodatasum/nodatacow mount option only affects new
      files. Checksums and COW on data are only controlled by the
      inode flags.
      
      2) check the existence of checksum in the nodatacow checker.
      If checksums exist, force COW the data extent. This ensure that
      checksum for a given block is either valid or does not exist.
      
      3) update data relocation code to properly handle the case
      of checksum missing.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      17d217fe
    • Y
      Btrfs: fix leaking block group on balance · d2fb3437
      Yan Zheng 提交于
      The block group structs are referenced in many different
      places, and it's not safe to free while balancing.  So, those block
      group structs were simply leaked instead.
      
      This patch replaces the block group pointer in the inode with the starting byte
      offset of the block group and adds reference counting to the block group
      struct.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      d2fb3437
  4. 10 12月, 2008 1 次提交
    • C
      Btrfs: Delete csum items when freeing extents · 459931ec
      Chris Mason 提交于
      This finishes off the new checksumming code by removing csum items
      for extents that are no longer in use.
      
      The trick is doing it without racing because a single csum item may
      hold csums for more than one extent.  Extra checks are added to
      btrfs_csum_file_blocks to make sure that we are using the correct
      csum item after dropping locks.
      
      A new btrfs_split_item is added to split a single csum item so it
      can be split without dropping the leaf lock.  This is used to
      remove csum bytes from the middle of an item.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      459931ec
  5. 09 12月, 2008 2 次提交
    • C
      Btrfs: Add inode sequence number for NFS and reserved space in a few structs · c3027eb5
      Chris Mason 提交于
      This adds a sequence number to the btrfs inode that is increased on
      every update.  NFS will be able to use that to detect when an inode has
      changed, without relying on inaccurate time fields.
      
      While we're here, this also:
      
      Puts reserved space into the super block and inode
      
      Adds a log root transid to the super so we can pick the newest super
      based on the fsync log as well as the main transaction ID.  For now
      the log root transid is always zero, but that'll get fixed.
      
      Adds a starting offset to the dev_item.  This will let us do better
      alignment calculations if we know the start of a partition on the disk.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c3027eb5
    • C
      Btrfs: move data checksumming into a dedicated tree · d20f7043
      Chris Mason 提交于
      Btrfs stores checksums for each data block.  Until now, they have
      been stored in the subvolume trees, indexed by the inode that is
      referencing the data block.  This means that when we read the inode,
      we've probably read in at least some checksums as well.
      
      But, this has a few problems:
      
      * The checksums are indexed by logical offset in the file.  When
      compression is on, this means we have to do the expensive checksumming
      on the uncompressed data.  It would be faster if we could checksum
      the compressed data instead.
      
      * If we implement encryption, we'll be checksumming the plain text and
      storing that on disk.  This is significantly less secure.
      
      * For either compression or encryption, we have to get the plain text
      back before we can verify the checksum as correct.  This makes the raid
      layer balancing and extent moving much more expensive.
      
      * It makes the front end caching code more complex, as we have touch
      the subvolume and inodes as we cache extents.
      
      * There is potentitally one copy of the checksum in each subvolume
      referencing an extent.
      
      The solution used here is to store the extent checksums in a dedicated
      tree.  This allows us to index the checksums by phyiscal extent
      start and length.  It means:
      
      * The checksum is against the data stored on disk, after any compression
      or encryption is done.
      
      * The checksum is stored in a central location, and can be verified without
      following back references, or reading inodes.
      
      This makes compression significantly faster by reducing the amount of
      data that needs to be checksummed.  It will also allow much faster
      raid management code in general.
      
      The checksums are indexed by a key with a fixed objectid (a magic value
      in ctree.h) and offset set to the starting byte of the extent.  This
      allows us to copy the checksum items into the fsync log tree directly (or
      any other tree), without having to invent a second format for them.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      d20f7043
  6. 02 12月, 2008 3 次提交
  7. 21 11月, 2008 1 次提交
  8. 19 11月, 2008 1 次提交
  9. 18 11月, 2008 5 次提交
    • C
      Btrfs: prevent loops in the directory tree when creating snapshots · ea9e8b11
      Chris Mason 提交于
      For a directory tree:
      
      /mnt/subvolA/subvolB
      
      btrfsctl -s /mnt/subvolA/subvolB /mnt
      
      Will create a directory loop with subvolA under subvolB.  This
      commit uses the forward refs for each subvol and snapshot to error out
      before creating the loop.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      ea9e8b11
    • C
      Btrfs: Add backrefs and forward refs for subvols and snapshots · 0660b5af
      Chris Mason 提交于
      Subvols and snapshots can now be referenced from any point in the directory
      tree.  We need to maintain back refs for them so we can find lost
      subvols.
      
      Forward refs are added so that we know all of the subvols and
      snapshots referenced anywhere in the directory tree of a single subvol.  This
      can be used to do recursive snapshotting (but they aren't yet) and it is
      also used to detect and prevent directory loops when creating new snapshots.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      0660b5af
    • C
      Btrfs: Give each subvol and snapshot their own anonymous devid · 3394e160
      Chris Mason 提交于
      Each subvolume has its own private inode number space, and so we need
      to fill in different device numbers for each subvolume to avoid confusing
      applications.
      
      This commit puts a struct super_block into struct btrfs_root so it can
      call set_anon_super() and get a different device number generated for
      each root.
      
      btrfs_rename is changed to prevent renames across subvols.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      3394e160
    • C
      Btrfs: Allow subvolumes and snapshots anywhere in the directory tree · 3de4586c
      Chris Mason 提交于
      Before, all snapshots and subvolumes lived in a single flat directory.  This
      was awkward and confusing because the single flat directory was only writable
      with the ioctls.
      
      This commit changes the ioctls to create subvols and snapshots at any
      point in the directory tree.  This requires making separate ioctls for
      snapshot and subvol creation instead of a combining them into one.
      
      The subvol ioctl does:
      
      btrfsctl -S subvol_name parent_dir
      
      After the ioctl is done subvol_name lives inside parent_dir.
      
      The snapshot ioctl does:
      
      btrfsctl -s path_for_snapshot root_to_snapshot
      
      path_for_snapshot can be an absolute or relative path.  btrfsctl breaks it up
      into directory and basename components.
      
      root_to_snapshot can be any file or directory in the FS.  The snapshot
      is taken of the entire root where that file lives.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      3de4586c
    • Y
      Btrfs: Seed device support · 2b82032c
      Yan Zheng 提交于
      Seed device is a special btrfs with SEEDING super flag
      set and can only be mounted in read-only mode. Seed
      devices allow people to create new btrfs on top of it.
      
      The new FS contains the same contents as the seed device,
      but it can be mounted in read-write mode.
      
      This patch does the following:
      
      1) split code in btrfs_alloc_chunk into two parts. The first part does makes
      the newly allocated chunk usable, but does not do any operation that modifies
      the chunk tree. The second part does the the chunk tree modifications. This
      division is for the bootstrap step of adding storage to the seed device.
      
      2) Update device management code to handle seed device.
      The basic idea is: For an FS grown from seed devices, its
      seed devices are put into a list. Seed devices are
      opened on demand at mounting time. If any seed device is
      missing or has been changed, btrfs kernel module will
      refuse to mount the FS.
      
      3) make btrfs_find_block_group not return NULL when all
      block groups are read-only.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      2b82032c
  10. 13 11月, 2008 2 次提交
    • Y
      Btrfs: mount ro and remount support · c146afad
      Yan Zheng 提交于
      This patch adds mount ro and remount support. The main
      changes in patch are: adding btrfs_remount and related
      helper function; splitting the transaction related code
      out of close_ctree into btrfs_commit_super; updating
      allocator to properly handle read only block group.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      c146afad
    • J
      Btrfs: batch extent inserts/updates/deletions on the extent root · f3465ca4
      Josef Bacik 提交于
      While profiling the allocator I noticed a good amount of time was being spent in
      finish_current_insert and del_pending_extents, and as the filesystem filled up
      more and more time was being spent in those functions.  This patch aims to try
      and reduce that problem.  This happens two ways
      
      1) track if we tried to delete an extent that we are going to update or insert.
      Once we get into finish_current_insert we discard any of the extents that were
      marked for deletion.  This saves us from doing unnecessary work almost every
      time finish_current_insert runs.
      
      2) Batch insertion/updates/deletions.  Instead of doing a btrfs_search_slot for
      each individual extent and doing the needed operation, we instead keep the leaf
      around and see if there is anything else we can do on that leaf.  On the insert
      case I introduced a btrfs_insert_some_items, which will take an array of keys
      with an array of data_sizes and try and squeeze in as many of those keys as
      possible, and then return how many keys it was able to insert.  In the update
      case we search for an extent ref, update the ref and then loop through the leaf
      to see if any of the other refs we are looking to update are on that leaf, and
      then once we are done we release the path and search for the next ref we need to
      update.  And finally for the deletion we try and delete the extent+ref in pairs,
      so we will try to find extent+ref pairs next to the extent we are trying to free
      and free them in bulk if possible.
      
      This along with the other cluster fix that Chris pushed out a bit ago helps make
      the allocator preform more uniformly as it fills up the disk.  There is still a
      slight drop as we fill up the disk since we start having to stick new blocks in
      odd places which results in more COW's than on a empty fs, but the drop is not
      nearly as severe as it was before.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      f3465ca4
  11. 07 11月, 2008 1 次提交
    • C
      Btrfs: Optimize compressed writeback and reads · 771ed689
      Chris Mason 提交于
      When reading compressed extents, try to put pages into the page cache
      for any pages covered by the compressed extent that readpages didn't already
      preload.
      
      Add an async work queue to handle transformations at delayed allocation processing
      time.  Right now this is just compression.  The workflow is:
      
      1) Find offsets in the file marked for delayed allocation
      2) Lock the pages
      3) Lock the state bits
      4) Call the async delalloc code
      
      The async delalloc code clears the state lock bits and delalloc bits.  It is
      important this happens before the range goes into the work queue because
      otherwise it might deadlock with other work queue items that try to lock
      those extent bits.
      
      The file pages are compressed, and if the compression doesn't work the
      pages are written back directly.
      
      An ordered work queue is used to make sure the inodes are written in the same
      order that pdflush or writepages sent them down.
      
      This changes extent_write_cache_pages to let the writepage function
      update the wbc nr_written count.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      771ed689
  12. 01 11月, 2008 1 次提交
  13. 31 10月, 2008 3 次提交
    • Y
      Btrfs: Add fallocate support v2 · d899e052
      Yan Zheng 提交于
      This patch updates btrfs-progs for fallocate support.
      
      fallocate is a little different in Btrfs because we need to tell the
      COW system that a given preallocated extent doesn't need to be
      cow'd as long as there are no snapshots of it.  This leverages the
      -o nodatacow checks.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      d899e052
    • Y
      Btrfs: update nodatacow code v2 · 80ff3856
      Yan Zheng 提交于
      This patch simplifies the nodatacow checker. If all references
      were created after the latest snapshot, then we can avoid COW
      safely. This patch also updates run_delalloc_nocow to do more
      fine-grained checking.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      80ff3856
    • Y
      Btrfs: update hole handling v2 · 9036c102
      Yan Zheng 提交于
      This patch splits the hole insertion code out of btrfs_setattr
      into btrfs_cont_expand and updates btrfs_get_extent to properly
      handle the case that file extent items are not continuous.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      9036c102
  14. 30 10月, 2008 6 次提交
    • C
    • Y
      Btrfs: Add root tree pointer transaction ids · 84234f3a
      Yan Zheng 提交于
      This patch adds transaction IDs to root tree pointers.
      Transaction IDs in tree pointers are compared with the
      generation numbers in block headers when reading root
      blocks of trees. This can detect some types of IO errors.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      
      84234f3a
    • J
      Btrfs: nuke fs wide allocation mutex V2 · 25179201
      Josef Bacik 提交于
      This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
      of little locks.
      
      There is now a pinned_mutex, which is used when messing with the pinned_extents
      extent io tree, and the extent_ins_mutex which is used with the pending_del and
      extent_ins extent io trees.
      
      The locking for the extent tree stuff was inspired by a patch that Yan Zheng
      wrote to fix a race condition, I cleaned it up some and changed the locking
      around a little bit, but the idea remains the same.  Basically instead of
      holding the extent_ins_mutex throughout the processing of an extent on the
      extent_ins or pending_del trees, we just hold it while we're searching and when
      we clear the bits on those trees, and lock the extent for the duration of the
      operations on the extent.
      
      Also to keep from getting hung up waiting to lock an extent, I've added a
      try_lock_extent so if we cannot lock the extent, move on to the next one in the
      tree and we'll come back to that one.  I have tested this heavily and it does
      not appear to break anything.  This has to be applied on top of my
      find_free_extent redo patch.
      
      I tested this patch on top of Yan's space reblancing code and it worked fine.
      The only thing that has changed since the last version is I pulled out all my
      debugging stuff, apparently I forgot to run guilt refresh before I sent the
      last patch out.  Thank you,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      
      25179201
    • J
      Btrfs: fix enospc when there is plenty of space · 80eb234a
      Josef Bacik 提交于
      So there is an odd case where we can possibly return -ENOSPC when there is in
      fact space to be had.  It only happens with Metadata writes, and happens _very_
      infrequently.  What has to happen is we have to allocate have allocated out of
      the first logical byte on the disk, which would set last_alloc to
      first_logical_byte(root, 0), so search_start == orig_search_start.  We then
      need to allocate for normal metadata, so BTRFS_BLOCK_GROUP_METADATA |
      BTRFS_BLOCK_GROUP_DUP.  We will do a block lookup for the given search_start,
      block_group_bits() won't match and we'll go to choose another block group.
      However because search_start matches orig_search_start we go to see if we can
      allocate a chunk.
      
      If we are in the situation that we cannot allocate a chunk, we fail and ENOSPC.
      This is kind of a big flaw of the way find_free_extent works, as it along with
      find_free_space loop through _all_ of the block groups, not just the ones that
      we want to allocate out of.  This patch completely kills find_free_space and
      rolls it into find_free_extent.  I've introduced a sort of state machine into
      this, which will make it easier to get cache miss information out of the
      allocator, and will work well with my locking changes.
      
      The basic flow is this:  We have the variable loop which is 0, meaning we are
      in the hint phase.  We lookup the block group for the hint, and lookup the
      space_info for what we want to allocate out of.  If the block group we were
      pointed at by the hint either isn't of the correct type, or just doesn't have
      the space we need, we set head to space_info->block_groups, so we start at the
      beginning of the block groups for this particular space info, and loop through.
      
      This is also where we add the empty_cluster to total_needed.  At this point
      loop is set to 1 and we just loop through all of the block groups for this
      particular space_info looking for the space we need, just as find_free_space
      would have done, except we only hit the block groups we want and not _all_ of
      the block groups.  If we come full circle we see if we can allocate a chunk.
      If we cannot of course we exit with -ENOSPC and we are good.  If not we start
      over at space_info->block_groups and loop through again, with loop == 2.  If we
      come full circle and haven't found what we need then we exit with -ENOSPC.
      I've been running this for a couple of days now and it seems stable, and I
      haven't yet hit a -ENOSPC when there was plenty of space left.
      
      Also I've made a groups_sem to handle the group list for the space_info.  This
      is part of my locking changes, but is relatively safe and seems better than
      holding the space_info spinlock over that entire search time.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
       
      80eb234a
    • Y
      Btrfs: Improve space balancing code · f82d02d9
      Yan Zheng 提交于
      This patch improves the space balancing code to keep more sharing
      of tree blocks. The only case that breaks sharing of tree blocks is
      data extents get fragmented during balancing. The main changes in
      this patch are:
      
      Add a 'drop sub-tree' function. This solves the problem in old code
      that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.
      
      Remove relocation mapping tree. Relocation mappings are stored in
      struct btrfs_ref_path and updated dynamically during walking up/down
      the reference path. This reduces CPU usage and simplifies code.
      
      This patch also fixes a bug. Root items for reloc trees should be
      updated in btrfs_free_reloc_root.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      
      f82d02d9
    • C
      Btrfs: Add zlib compression support · c8b97818
      Chris Mason 提交于
      This is a large change for adding compression on reading and writing,
      both for inline and regular extents.  It does some fairly large
      surgery to the writeback paths.
      
      Compression is off by default and enabled by mount -o compress.  Even
      when the -o compress mount option is not used, it is possible to read
      compressed extents off the disk.
      
      If compression for a given set of pages fails to make them smaller, the
      file is flagged to avoid future compression attempts later.
      
      * While finding delalloc extents, the pages are locked before being sent down
      to the delalloc handler.  This allows the delalloc handler to do complex things
      such as cleaning the pages, marking them writeback and starting IO on their
      behalf.
      
      * Inline extents are inserted at delalloc time now.  This allows us to compress
      the data before inserting the inline extent, and it allows us to insert
      an inline extent that spans multiple pages.
      
      * All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
      are changed to record both an in-memory size and an on disk size, as well
      as a flag for compression.
      
      From a disk format point of view, the extent pointers in the file are changed
      to record the on disk size of a given extent and some encoding flags.
      Space in the disk format is allocated for compression encoding, as well
      as encryption and a generic 'other' field.  Neither the encryption or the
      'other' field are currently used.
      
      In order to limit the amount of data read for a single random read in the
      file, the size of a compressed extent is limited to 128k.  This is a
      software only limit, the disk format supports u64 sized compressed extents.
      
      In order to limit the ram consumed while processing extents, the uncompressed
      size of a compressed extent is limited to 256k.  This is a software only limit
      and will be subject to tuning later.
      
      Checksumming is still done on compressed extents, and it is done on the
      uncompressed version of the data.  This way additional encodings can be
      layered on without having to figure out which encoding to checksum.
      
      Compression happens at delalloc time, which is basically singled threaded because
      it is usually done by a single pdflush thread.  This makes it tricky to
      spread the compression load across all the cpus on the box.  We'll have to
      look at parallel pdflush walks of dirty inodes at a later time.
      
      Decompression is hooked into readpages and it does spread across CPUs nicely.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c8b97818
  15. 10 10月, 2008 1 次提交
    • C
      Btrfs: Fix subvolume creation locking rules · cb8e7090
      Christoph Hellwig 提交于
      Creating a subvolume is in many ways like a normal VFS ->mkdir, and we
      really need to play with the VFS topology locking rules.  So instead of
      just creating the snapshot on disk and then later getting rid of
      confliting aliases do it correctly from the start.  This will become
      especially important once we allow for subvolumes anywhere in the tree,
      and not just below a hidden root.
      
      Note that snapshots will need the same treatment, but do to the delay
      in creating them we can't do it currently.  Chris promised to fix that
      issue, so I'll wait on that.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      
      cb8e7090
  16. 09 10月, 2008 3 次提交
  17. 04 10月, 2008 1 次提交
    • C
      Btrfs: remove last_log_alloc allocator optimization · 30c43e24
      Chris Mason 提交于
      The tree logging code was trying to separate tree log allocations
      from normal metadata allocations to improve writeback patterns during
      an fsync.
      
      But, the code was not effective and ended up just mixing tree log
      blocks with regular metadata.  That seems to be working fairly well,
      so the last_log_alloc code can be removed.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      30c43e24
  18. 02 10月, 2008 1 次提交
    • C
      Btrfs: don't read leaf blocks containing only checksums during truncate · 323ac95b
      Chris Mason 提交于
      Checksum items take up a significant portion of the metadata for large files.
      It is possible to avoid reading them during truncates by checking the keys in
      the higher level nodes.
      
      If a given leaf is followed by another leaf where the lowest key is a checksum
      item from the same file, we know we can safely delete the leaf without
      reading it.
      
      For a 32GB file on a 6 drive raid0 array, Btrfs needs 8s to delete
      the file with a cold cache.  It is read bound during the run.
      
      With this change, Btrfs is able to delete the file in 0.5s
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      323ac95b
  19. 30 9月, 2008 1 次提交
    • C
      Btrfs: add and improve comments · d352ac68
      Chris Mason 提交于
      This improves the comments at the top of many functions.  It didn't
      dive into the guts of functions because I was trying to
      avoid merging problems with the new allocator and back reference work.
      
      extent-tree.c and volumes.c were both skipped, and there is definitely
      more work todo in cleaning and commenting the code.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      d352ac68
  20. 29 9月, 2008 1 次提交
    • C
      Btrfs: Wait for IO on the block device inodes of newly added devices · 8c8bee1d
      Chris Mason 提交于
      btrfs-vol -a /dev/xxx will zero the first and last two MB of the device.
      The kernel code needs to wait for this IO to finish before it adds
      the device.
      
      btrfs metadata IO does not happen through the block device inode.  A
      separate address space is used, allowing the zero filled buffer heads in
      the block device inode to be written to disk after FS metadata starts
      going down to the disk via the btrfs metadata inode.
      
      The end result is zero filled metadata blocks after adding new devices
      into the filesystem.
      
      The fix is a simple filemap_write_and_wait on the block device inode
      before actually inserting it into the pool of available devices.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      8c8bee1d
  21. 26 9月, 2008 2 次提交
    • Z
      Btrfs: update space balancing code · 1a40e23b
      Zheng Yan 提交于
      This patch updates the space balancing code to utilize the new
      backref format.  Before, btrfs-vol -b would break any COW links
      on data blocks or metadata.  This was slow and caused the amount
      of space used to explode if a large number of snapshots were present.
      
      The new code can keeps the sharing of all data extents and
      most of the tree blocks.
      
      To maintain the sharing of data extents, the space balance code uses
      a seperate inode hold data extent pointers, then updates the references
      to point to the new location.
      
      To maintain the sharing of tree blocks, the space balance code uses
      reloc trees to relocate tree blocks in reference counted roots.
      There is one reloc tree for each subvol, and all reloc trees share
      same root key objectid. Reloc trees are snapshots of the latest
      committed roots of subvols (root->commit_root).
      
      To relocate a tree block referenced by a subvol, there are two steps.
      COW the block through subvol's reloc tree, then update block pointer in
      the subvol to point to the new block. Since all reloc trees share
      same root key objectid, doing special handing for tree blocks
      owned by them is easy. Once a tree block has been COWed in one
      reloc tree, we can use the resulting new block directly when the
      same block is required to COW again through other reloc trees.
      In this way, relocated tree blocks are shared between reloc trees,
      so they are also shared between subvols.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1a40e23b
    • Z
      Btrfs: extent_map and data=ordered fixes for space balancing · 5b21f2ed
      Zheng Yan 提交于
      * Add an EXTENT_BOUNDARY state bit to keep the writepage code
      from merging data extents that are in the process of being
      relocated.  This allows us to do accounting for them properly.
      
      * The balancing code relocates data extents indepdent of the underlying
      inode.  The extent_map code was modified to properly account for
      things moving around (invalidating extent_map caches in the inode).
      
      * Don't take the drop_mutex in the create_subvol ioctl.  It isn't
      required.
      
      * Fix walking of the ordered extent list to avoid races with sys_unlink
      
      * Change the lock ordering rules.  Transaction start goes outside
      the drop_mutex.  This allows btrfs_commit_transaction to directly
      drop the relocation trees.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5b21f2ed