1. 29 7月, 2008 3 次提交
    • A
      mmu-notifiers: core · cddb8a5c
      Andrea Arcangeli 提交于
      With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
       There are secondary MMUs (with secondary sptes and secondary tlbs) too.
      sptes in the kvm case are shadow pagetables, but when I say spte in
      mmu-notifier context, I mean "secondary pte".  In GRU case there's no
      actual secondary pte and there's only a secondary tlb because the GRU
      secondary MMU has no knowledge about sptes and every secondary tlb miss
      event in the MMU always generates a page fault that has to be resolved by
      the CPU (this is not the case of KVM where the a secondary tlb miss will
      walk sptes in hardware and it will refill the secondary tlb transparently
      to software if the corresponding spte is present).  The same way
      zap_page_range has to invalidate the pte before freeing the page, the spte
      (and secondary tlb) must also be invalidated before any page is freed and
      reused.
      
      Currently we take a page_count pin on every page mapped by sptes, but that
      means the pages can't be swapped whenever they're mapped by any spte
      because they're part of the guest working set.  Furthermore a spte unmap
      event can immediately lead to a page to be freed when the pin is released
      (so requiring the same complex and relatively slow tlb_gather smp safe
      logic we have in zap_page_range and that can be avoided completely if the
      spte unmap event doesn't require an unpin of the page previously mapped in
      the secondary MMU).
      
      The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
      when the VM is swapping or freeing or doing anything on the primary MMU so
      that the secondary MMU code can drop sptes before the pages are freed,
      avoiding all page pinning and allowing 100% reliable swapping of guest
      physical address space.  Furthermore it avoids the code that teardown the
      mappings of the secondary MMU, to implement a logic like tlb_gather in
      zap_page_range that would require many IPI to flush other cpu tlbs, for
      each fixed number of spte unmapped.
      
      To make an example: if what happens on the primary MMU is a protection
      downgrade (from writeable to wrprotect) the secondary MMU mappings will be
      invalidated, and the next secondary-mmu-page-fault will call
      get_user_pages and trigger a do_wp_page through get_user_pages if it
      called get_user_pages with write=1, and it'll re-establishing an updated
      spte or secondary-tlb-mapping on the copied page.  Or it will setup a
      readonly spte or readonly tlb mapping if it's a guest-read, if it calls
      get_user_pages with write=0.  This is just an example.
      
      This allows to map any page pointed by any pte (and in turn visible in the
      primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
      full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
      with kvm), or a remote DMA in software like XPMEM (hence needing of
      schedule in XPMEM code to send the invalidate to the remote node, while no
      need to schedule in kvm/gru as it's an immediate event like invalidating
      primary-mmu pte).
      
      At least for KVM without this patch it's impossible to swap guests
      reliably.  And having this feature and removing the page pin allows
      several other optimizations that simplify life considerably.
      
      Dependencies:
      
      1) mm_take_all_locks() to register the mmu notifier when the whole VM
         isn't doing anything with "mm".  This allows mmu notifier users to keep
         track if the VM is in the middle of the invalidate_range_begin/end
         critical section with an atomic counter incraese in range_begin and
         decreased in range_end.  No secondary MMU page fault is allowed to map
         any spte or secondary tlb reference, while the VM is in the middle of
         range_begin/end as any page returned by get_user_pages in that critical
         section could later immediately be freed without any further
         ->invalidate_page notification (invalidate_range_begin/end works on
         ranges and ->invalidate_page isn't called immediately before freeing
         the page).  To stop all page freeing and pagetable overwrites the
         mmap_sem must be taken in write mode and all other anon_vma/i_mmap
         locks must be taken too.
      
      2) It'd be a waste to add branches in the VM if nobody could possibly
         run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
         CONFIG_KVM=m/y.  In the current kernel kvm won't yet take advantage of
         mmu notifiers, but this already allows to compile a KVM external module
         against a kernel with mmu notifiers enabled and from the next pull from
         kvm.git we'll start using them.  And GRU/XPMEM will also be able to
         continue the development by enabling KVM=m in their config, until they
         submit all GRU/XPMEM GPLv2 code to the mainline kernel.  Then they can
         also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
         This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
         are all =n.
      
      The mmu_notifier_register call can fail because mm_take_all_locks may be
      interrupted by a signal and return -EINTR.  Because mmu_notifier_reigster
      is used when a driver startup, a failure can be gracefully handled.  Here
      an example of the change applied to kvm to register the mmu notifiers.
      Usually when a driver startups other allocations are required anyway and
      -ENOMEM failure paths exists already.
      
       struct  kvm *kvm_arch_create_vm(void)
       {
              struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
      +       int err;
      
              if (!kvm)
                      return ERR_PTR(-ENOMEM);
      
              INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
      
      +       kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
      +       err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
      +       if (err) {
      +               kfree(kvm);
      +               return ERR_PTR(err);
      +       }
      +
              return kvm;
       }
      
      mmu_notifier_unregister returns void and it's reliable.
      
      The patch also adds a few needed but missing includes that would prevent
      kernel to compile after these changes on non-x86 archs (x86 didn't need
      them by luck).
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: fix mm/filemap_xip.c build]
      [akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
      Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com>
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Jack Steiner <steiner@sgi.com>
      Cc: Robin Holt <holt@sgi.com>
      Cc: Nick Piggin <npiggin@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
      Cc: Roland Dreier <rdreier@cisco.com>
      Cc: Steve Wise <swise@opengridcomputing.com>
      Cc: Avi Kivity <avi@qumranet.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Chris Wright <chrisw@redhat.com>
      Cc: Marcelo Tosatti <marcelo@kvack.org>
      Cc: Eric Dumazet <dada1@cosmosbay.com>
      Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
      Cc: Izik Eidus <izike@qumranet.com>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cddb8a5c
    • A
      mmu-notifiers: add mm_take_all_locks() operation · 7906d00c
      Andrea Arcangeli 提交于
      mm_take_all_locks holds off reclaim from an entire mm_struct.  This allows
      mmu notifiers to register into the mm at any time with the guarantee that
      no mmu operation is in progress on the mm.
      
      This operation locks against the VM for all pte/vma/mm related operations
      that could ever happen on a certain mm.  This includes vmtruncate,
      try_to_unmap, and all page faults.
      
      The caller must take the mmap_sem in write mode before calling
      mm_take_all_locks().  The caller isn't allowed to release the mmap_sem
      until mm_drop_all_locks() returns.
      
      mmap_sem in write mode is required in order to block all operations that
      could modify pagetables and free pages without need of altering the vma
      layout (for example populate_range() with nonlinear vmas).  It's also
      needed in write mode to avoid new anon_vmas to be associated with existing
      vmas.
      
      A single task can't take more than one mm_take_all_locks() in a row or it
      would deadlock.
      
      mm_take_all_locks() and mm_drop_all_locks are expensive operations that
      may have to take thousand of locks.
      
      mm_take_all_locks() can fail if it's interrupted by signals.
      
      When mmu_notifier_register returns, we must be sure that the driver is
      notified if some task is in the middle of a vmtruncate for the 'mm' where
      the mmu notifier was registered (mmu_notifier_invalidate_range_start/end
      is run around the vmtruncation but mmu_notifier_register can run after
      mmu_notifier_invalidate_range_start and before
      mmu_notifier_invalidate_range_end).  Same problem for rmap paths.  And
      we've to remove page pinning to avoid replicating the tlb_gather logic
      inside KVM (and GRU doesn't work well with page pinning regardless of
      needing tlb_gather), so without mm_take_all_locks when vmtruncate frees
      the page, kvm would have no way to notice that it mapped into sptes a page
      that is going into the freelist without a chance of any further
      mmu_notifier notification.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com>
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Jack Steiner <steiner@sgi.com>
      Cc: Robin Holt <holt@sgi.com>
      Cc: Nick Piggin <npiggin@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
      Cc: Roland Dreier <rdreier@cisco.com>
      Cc: Steve Wise <swise@opengridcomputing.com>
      Cc: Avi Kivity <avi@qumranet.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Chris Wright <chrisw@redhat.com>
      Cc: Marcelo Tosatti <marcelo@kvack.org>
      Cc: Eric Dumazet <dada1@cosmosbay.com>
      Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
      Cc: Izik Eidus <izike@qumranet.com>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7906d00c
    • H
      tmpfs: fix kernel BUG in shmem_delete_inode · 14fcc23f
      Hugh Dickins 提交于
      SuSE's insserve initscript ordering program hits kernel BUG at mm/shmem.c:814
      on 2.6.26.  It's using posix_fadvise on directories, and the shmem_readpage
      method added in 2.6.23 is letting POSIX_FADV_WILLNEED allocate useless pages
      to a tmpfs directory, incrementing i_blocks count but never decrementing it.
      
      Fix this by assigning shmem_aops (pointing to readpage and writepage and
      set_page_dirty) only when it's needed, on a regular file or a long symlink.
      
      Many thanks to Kel for outstanding bugreport and steps to reproduce it.
      Reported-by: NKel Modderman <kel@otaku42.de>
      Tested-by: NKel Modderman <kel@otaku42.de>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Cc: <stable@kernel.org>		[2.6.25.x, 2.6.26.x]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      14fcc23f
  2. 28 7月, 2008 1 次提交
  3. 27 7月, 2008 19 次提交
  4. 26 7月, 2008 14 次提交
    • I
      mm/hugetlb.c: fix build failure with !CONFIG_SYSCTL · e44d1b29
      Ingo Molnar 提交于
      on !CONFIG_SYSCTL on x86 with latest -git i get:
      
           mm/hugetlb.c: In function 'decrement_hugepage_resv_vma':
           mm/hugetlb.c:83: error: 'reserve' undeclared (first use in this function)
           mm/hugetlb.c:83: error: (Each undeclared identifier is reported only once
           mm/hugetlb.c:83: error: for each function it appears in.)
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e44d1b29
    • K
      per-task-delay-accounting: add memory reclaim delay · 873b4771
      Keika Kobayashi 提交于
      Sometimes, application responses become bad under heavy memory load.
      Applications take a bit time to reclaim memory.  The statistics, how long
      memory reclaim takes, will be useful to measure memory usage.
      
      This patch adds accounting memory reclaim to per-task-delay-accounting for
      accounting the time of do_try_to_free_pages().
      
      <i.e>
      
      - When System is under low memory load,
        memory reclaim may not occur.
      
      $ free
                   total       used       free     shared    buffers     cached
      Mem:       8197800    1577300    6620500          0       4808    1516724
      -/+ buffers/cache:      55768    8142032
      Swap:     16386292          0   16386292
      
      $ vmstat 1
      procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
       r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
       0  0      0 5069748  10612 3014060    0    0     0     0    3   26  0  0 100  0
       0  0      0 5069748  10612 3014060    0    0     0     0    4   22  0  0 100  0
       0  0      0 5069748  10612 3014060    0    0     0     0    3   18  0  0 100  0
      
      Measure the time of tar command.
      
      $ ls -s test.dat
      1501472 test.dat
      
      $ time tar cvf test.tar test.dat
      real    0m13.388s
      user    0m0.116s
      sys     0m5.304s
      
      $ ./delayget -d -p <pid>
      CPU             count     real total  virtual total    delay total
                        428     5528345500     5477116080       62749891
      IO              count    delay total
                        338     8078977189
      SWAP            count    delay total
                          0              0
      RECLAIM         count    delay total
                          0              0
      
      - When system is under heavy memory load
        memory reclaim may occur.
      
      $ vmstat 1
      procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
       r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
       0  0 7159032  49724   1812   3012    0    0     0     0    3   24  0  0 100  0
       0  0 7159032  49724   1812   3012    0    0     0     0    4   24  0  0 100  0
       0  0 7159032  49848   1812   3012    0    0     0     0    3   22  0  0 100  0
      
      In this case, one process uses more 8G memory
      by execution of malloc() and memset().
      
      $ time tar cvf test.tar test.dat
      real    1m38.563s        <-  increased by 85 sec
      user    0m0.140s
      sys     0m7.060s
      
      $ ./delayget -d -p <pid>
      CPU             count     real total  virtual total    delay total
                       9021     7140446250     7315277975      923201824
      IO              count    delay total
                       8965    90466349669
      SWAP            count    delay total
                          3       21036367
      RECLAIM         count    delay total
                        740    61011951153
      
      In the later case, the value of RECLAIM is increasing.
      So, taskstats can show how much memory reclaim influences TAT.
      Signed-off-by: NKeika Kobayashi <kobayashi.kk@ncos.nec.co.jp>
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujistu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      873b4771
    • K
      memcg: limit change shrink usage · 628f4235
      KAMEZAWA Hiroyuki 提交于
      Shrinking memory usage at limit change.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Acked-by: NPavel Emelyanov <xemul@openvz.org>
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Paul Menage <menage@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      628f4235
    • L
      memcg: clean up checking of the disabled flag · cede86ac
      Li Zefan 提交于
      Those checks are unnecessary, because when the subsystem is disabled
      it can't be mounted, so those functions won't get called.
      
      The check is needed in functions which will be called in other places
      except cgroup.
      
      [hugh@veritas.com: further checking of disabled flag]
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cede86ac
    • K
      memcg: remove a redundant check · accf163e
      KAMEZAWA Hiroyuki 提交于
      Because of remove refcnt patch, it's very rare case to that
      mem_cgroup_charge_common() is called against a page which is accounted.
      
      mem_cgroup_charge_common() is called when.
       1. a page is added into file cache.
       2. an anon page is _newly_ mapped.
      
      A racy case is that a newly-swapped-in anonymous page is referred from
      prural threads in do_swap_page() at the same time.
      (a page is not Locked when mem_cgroup_charge() is called from do_swap_page.)
      
      Another case is shmem. It charges its page before calling add_to_page_cache().
      Then, mem_cgroup_charge_cache() is called twice. This case is handled in
      mem_cgroup_cache_charge(). But this check may be too hacky...
      
      Signed-off-by : KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
      Cc: Paul Menage <menage@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      accf163e
    • K
      memcg: add hints for branch · b76734e5
      KAMEZAWA Hiroyuki 提交于
      Showing brach direction for obvious conditions.
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
      Cc: Paul Menage <menage@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b76734e5
    • K
      memcg: helper function for relcaim from shmem. · c9b0ed51
      KAMEZAWA Hiroyuki 提交于
      A new call, mem_cgroup_shrink_usage() is added for shmem handling and
      relacing non-standard usage of mem_cgroup_charge/uncharge.
      
      Now, shmem calls mem_cgroup_charge() just for reclaim some pages from
      mem_cgroup.  In general, shmem is used by some process group and not for
      global resource (like file caches).  So, it's reasonable to reclaim pages
      from mem_cgroup where shmem is mainly used.
      
      [hugh@veritas.com: shmem_getpage release page sooner]
      [hugh@veritas.com: mem_cgroup_shrink_usage css_put]
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
      Cc: Paul Menage <menage@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c9b0ed51
    • K
      memcg: remove refcnt from page_cgroup · 69029cd5
      KAMEZAWA Hiroyuki 提交于
      memcg: performance improvements
      
      Patch Description
       1/5 ... remove refcnt fron page_cgroup patch (shmem handling is fixed)
       2/5 ... swapcache handling patch
       3/5 ... add helper function for shmem's memory reclaim patch
       4/5 ... optimize by likely/unlikely ppatch
       5/5 ... remove redundunt check patch (shmem handling is fixed.)
      
      Unix bench result.
      
      == 2.6.26-rc2-mm1 + memory resource controller
      Execl Throughput                           2915.4 lps   (29.6 secs, 3 samples)
      C Compiler Throughput                      1019.3 lpm   (60.0 secs, 3 samples)
      Shell Scripts (1 concurrent)               5796.0 lpm   (60.0 secs, 3 samples)
      Shell Scripts (8 concurrent)               1097.7 lpm   (60.0 secs, 3 samples)
      Shell Scripts (16 concurrent)               565.3 lpm   (60.0 secs, 3 samples)
      File Read 1024 bufsize 2000 maxblocks    1022128.0 KBps  (30.0 secs, 3 samples)
      File Write 1024 bufsize 2000 maxblocks   544057.0 KBps  (30.0 secs, 3 samples)
      File Copy 1024 bufsize 2000 maxblocks    346481.0 KBps  (30.0 secs, 3 samples)
      File Read 256 bufsize 500 maxblocks      319325.0 KBps  (30.0 secs, 3 samples)
      File Write 256 bufsize 500 maxblocks     148788.0 KBps  (30.0 secs, 3 samples)
      File Copy 256 bufsize 500 maxblocks       99051.0 KBps  (30.0 secs, 3 samples)
      File Read 4096 bufsize 8000 maxblocks    2058917.0 KBps  (30.0 secs, 3 samples)
      File Write 4096 bufsize 8000 maxblocks   1606109.0 KBps  (30.0 secs, 3 samples)
      File Copy 4096 bufsize 8000 maxblocks    854789.0 KBps  (30.0 secs, 3 samples)
      Dc: sqrt(2) to 99 decimal places         126145.2 lpm   (30.0 secs, 3 samples)
      
                           INDEX VALUES
      TEST                                        BASELINE     RESULT      INDEX
      
      Execl Throughput                                43.0     2915.4      678.0
      File Copy 1024 bufsize 2000 maxblocks         3960.0   346481.0      875.0
      File Copy 256 bufsize 500 maxblocks           1655.0    99051.0      598.5
      File Copy 4096 bufsize 8000 maxblocks         5800.0   854789.0     1473.8
      Shell Scripts (8 concurrent)                     6.0     1097.7     1829.5
                                                                       =========
           FINAL SCORE                                                     991.3
      
      == 2.6.26-rc2-mm1 + this set ==
      Execl Throughput                           3012.9 lps   (29.9 secs, 3 samples)
      C Compiler Throughput                       981.0 lpm   (60.0 secs, 3 samples)
      Shell Scripts (1 concurrent)               5872.0 lpm   (60.0 secs, 3 samples)
      Shell Scripts (8 concurrent)               1120.3 lpm   (60.0 secs, 3 samples)
      Shell Scripts (16 concurrent)               578.0 lpm   (60.0 secs, 3 samples)
      File Read 1024 bufsize 2000 maxblocks    1003993.0 KBps  (30.0 secs, 3 samples)
      File Write 1024 bufsize 2000 maxblocks   550452.0 KBps  (30.0 secs, 3 samples)
      File Copy 1024 bufsize 2000 maxblocks    347159.0 KBps  (30.0 secs, 3 samples)
      File Read 256 bufsize 500 maxblocks      314644.0 KBps  (30.0 secs, 3 samples)
      File Write 256 bufsize 500 maxblocks     151852.0 KBps  (30.0 secs, 3 samples)
      File Copy 256 bufsize 500 maxblocks      101000.0 KBps  (30.0 secs, 3 samples)
      File Read 4096 bufsize 8000 maxblocks    2033256.0 KBps  (30.0 secs, 3 samples)
      File Write 4096 bufsize 8000 maxblocks   1611814.0 KBps  (30.0 secs, 3 samples)
      File Copy 4096 bufsize 8000 maxblocks    847979.0 KBps  (30.0 secs, 3 samples)
      Dc: sqrt(2) to 99 decimal places         128148.7 lpm   (30.0 secs, 3 samples)
      
                           INDEX VALUES
      TEST                                        BASELINE     RESULT      INDEX
      
      Execl Throughput                                43.0     3012.9      700.7
      File Copy 1024 bufsize 2000 maxblocks         3960.0   347159.0      876.7
      File Copy 256 bufsize 500 maxblocks           1655.0   101000.0      610.3
      File Copy 4096 bufsize 8000 maxblocks         5800.0   847979.0     1462.0
      Shell Scripts (8 concurrent)                     6.0     1120.3     1867.2
                                                                       =========
           FINAL SCORE                                                    1004.6
      
      This patch:
      
      Remove refcnt from page_cgroup().
      
      After this,
      
       * A page is charged only when !page_mapped() && no page_cgroup is assigned.
      	* Anon page is newly mapped.
      	* File page is added to mapping->tree.
      
       * A page is uncharged only when
      	* Anon page is fully unmapped.
      	* File page is removed from LRU.
      
      There is no change in behavior from user's view.
      
      This patch also removes unnecessary calls in rmap.c which was used only for
      refcnt mangement.
      
      [akpm@linux-foundation.org: fix warning]
      [hugh@veritas.com: fix shmem_unuse_inode charging]
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
      Cc: Paul Menage <menage@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      69029cd5
    • K
      memcg: better migration handling · e8589cc1
      KAMEZAWA Hiroyuki 提交于
      This patch changes page migration under memory controller to use a
      different algorithm.  (thanks to Christoph for new idea.)
      
      Before:
       - page_cgroup is migrated from an old page to a new page.
      After:
       - a new page is accounted , no reuse of page_cgroup.
      
      Pros:
      
       - We can avoid compliated lock depndencies and races in migration.
      
      Cons:
      
       - new param to mem_cgroup_charge_common().
      
       - mem_cgroup_getref() is added for handling ref_cnt ping-pong.
      
      This version simplifies complicated lock dependency in page migraiton
      under memory resource controller.
      
        new refcnt sequence is following.
      
      a mapped page:
        prepage_migration() ..... +1 to NEW page
        try_to_unmap()      ..... all refs to OLD page is gone.
        move_pages()        ..... +1 to NEW page if page cache.
        remap...            ..... all refs from *map* is added to NEW one.
        end_migration()     ..... -1 to New page.
      
        page's mapcount + (page_is_cache) refs are added to NEW one.
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e8589cc1
    • K
      memcg: avoid unnecessary initialization · 508b7be0
      KAMEZAWA Hiroyuki 提交于
      * remove over-killing initialization (in fast path)
      * makeing the condition for PAGE_CGROUP_FLAG_ACTIVE be more obvious.
      Signed-off-by: NKAMEAZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Reviewed-by: NLi Zefan <lizf@cn.fujitsu.com>
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Acked-by: NPavel Emelyanov <xemul@openvz.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      508b7be0
    • K
      memcg: make global var read_mostly · a181b0e8
      KAMEZAWA Hiroyuki 提交于
      mem_cgroup_subsys and page_cgroup_cache should be read_mostly and
      MEM_CGROUP_RECLAIM_RETRIES can be just a fixed number.
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Acked-by: NPavel Emelyanov <xemul@openvz.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a181b0e8
    • P
      cgroup files: convert res_counter_write() to be a cgroups write_string() handler · 856c13aa
      Paul Menage 提交于
      Currently res_counter_write() is a raw file handler even though it's
      ultimately taking a number, since in some cases it wants to
      pre-process the string when converting it to a number.
      
      This patch converts res_counter_write() from a raw file handler to a
      write_string() handler; this allows some of the boilerplate
      copying/locking/checking to be removed, and simplies the cleanup path,
      since these functions are now performed by the cgroups framework.
      
      [lizf@cn.fujitsu.com: build fix]
      Signed-off-by: NPaul Menage <menage@google.com>
      Cc: Paul Jackson <pj@sgi.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: Serge Hallyn <serue@us.ibm.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      856c13aa
    • M
      jbd: fix race between free buffer and commit transaction · 3f31fddf
      Mingming Cao 提交于
      journal_try_to_free_buffers() could race with jbd commit transaction when
      the later is holding the buffer reference while waiting for the data
      buffer to flush to disk.  If the caller of journal_try_to_free_buffers()
      request tries hard to release the buffers, it will treat the failure as
      error and return back to the caller.  We have seen the directo IO failed
      due to this race.  Some of the caller of releasepage() also expecting the
      buffer to be dropped when passed with GFP_KERNEL mask to the
      releasepage()->journal_try_to_free_buffers().
      
      With this patch, if the caller is passing the __GFP_WAIT and __GFP_FS to
      indicating this call could wait, in case of try_to_free_buffers() failed,
      let's waiting for journal_commit_transaction() to finish commit the
      current committing transaction, then try to free those buffers again.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NMingming Cao <cmm@us.ibm.com>
      Reviewed-by: NBadari Pulavarty <pbadari@us.ibm.com>
      Acked-by: NJan Kara <jack@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3f31fddf
    • O
  5. 25 7月, 2008 3 次提交
    • H
      mm: fix ever-decreasing swap priority · 78ecba08
      Hugh Dickins 提交于
      Vegard Nossum has noticed the ever-decreasing negative priority in a
      swapon /swapoff loop, which eventually would misprioritize when int wraps
      positive.  Not worth spending much code on, but probably better fixed.
      
      It's easy to handle the swapping on and off of just one area, but there's
      not much point if a pair or more still misbehave.  To handle the general
      case, swapoff should compact negative priorities, keeping them always from
      -1 to -MAX_SWAPFILES.  That's a change, but should cause no regression,
      since these negative (unspecified) priorities are disjoint from the the
      positive specified priorities 0 to 32767.
      
      One small functional difference, which seems appropriate: when swapoff
      fails to free all swap from a negative priority area, that area is now
      reinserted at lowest priority, rather than at its original priority.
      
      In moving down swapon's setting of priority, I notice that an area is
      visible to /proc/swaps when it has swap_map set, yet that was being set
      before all the visible fields were properly filled in: corrected.
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Reported-by: NVegard Nossum <vegard.nossum@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      78ecba08
    • G
      mm: make CONFIG_MIGRATION available w/o CONFIG_NUMA · 83d1674a
      Gerald Schaefer 提交于
      We'd like to support CONFIG_MEMORY_HOTREMOVE on s390, which depends on
      CONFIG_MIGRATION.  So far, CONFIG_MIGRATION is only available with NUMA
      support.
      
      This patch makes CONFIG_MIGRATION selectable for architectures that define
      ARCH_ENABLE_MEMORY_HOTREMOVE.  When MIGRATION is enabled w/o NUMA, the
      kernel won't compile because migrate_vmas() does not know about
      vm_ops->migrate() and vma_migratable() does not know about policy_zone.
      To fix this, those two functions can be restricted to '#ifdef CONFIG_NUMA'
      because they are not being used w/o NUMA.  vma_migratable() is moved over
      from migrate.h to mempolicy.h.
      
      [kosaki.motohiro@jp.fujitsu.com: build fix]
      Acked-by: NChristoph Lameter <cl@linux-foundation.org>
      Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NKOSAKI Motorhiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      83d1674a
    • B
      memory-hotplug: add sysfs removable attribute for hotplug memory remove · 5c755e9f
      Badari Pulavarty 提交于
      Memory may be hot-removed on a per-memory-block basis, particularly on
      POWER where the SPARSEMEM section size often matches the memory-block
      size.  A user-level agent must be able to identify which sections of
      memory are likely to be removable before attempting the potentially
      expensive operation.  This patch adds a file called "removable" to the
      memory directory in sysfs to help such an agent.  In this patch, a memory
      block is considered removable if;
      
      o It contains only MOVABLE pageblocks
      o It contains only pageblocks with free pages regardless of pageblock type
      
      On the other hand, a memory block starting with a PageReserved() page will
      never be considered removable.  Without this patch, the user-agent is
      forced to choose a memory block to remove randomly.
      
      Sample output of the sysfs files:
      
      ./memory/memory0/removable: 0
      ./memory/memory1/removable: 0
      ./memory/memory2/removable: 0
      ./memory/memory3/removable: 0
      ./memory/memory4/removable: 0
      ./memory/memory5/removable: 0
      ./memory/memory6/removable: 0
      ./memory/memory7/removable: 1
      ./memory/memory8/removable: 0
      ./memory/memory9/removable: 0
      ./memory/memory10/removable: 0
      ./memory/memory11/removable: 0
      ./memory/memory12/removable: 0
      ./memory/memory13/removable: 0
      ./memory/memory14/removable: 0
      ./memory/memory15/removable: 0
      ./memory/memory16/removable: 0
      ./memory/memory17/removable: 1
      ./memory/memory18/removable: 1
      ./memory/memory19/removable: 1
      ./memory/memory20/removable: 1
      ./memory/memory21/removable: 1
      ./memory/memory22/removable: 1
      Signed-off-by: NBadari Pulavarty <pbadari@us.ibm.com>
      Signed-off-by: NMel Gorman <mel@csn.ul.ie>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5c755e9f