1. 29 5月, 2018 2 次提交
    • S
      tracing: Do not reference event data in post call triggers · c94e45bc
      Steven Rostedt (VMware) 提交于
      Trace event triggers can be called before or after the event has been
      committed. If it has been called after the commit, there's a possibility
      that the event no longer exists. Currently, the two post callers is the
      trigger to disable tracing (traceoff) and the one that will record a stack
      dump (stacktrace). Neither of them reference the trace event entry record,
      as that would lead to a race condition that could pass in corrupted data.
      
      To prevent any other users of the post data triggers from using the trace
      event record, pass in NULL to the post call trigger functions for the event
      record, as they should never need to use them in the first place.
      
      This does not fix any bug, but prevents bugs from happening by new post call
      trigger users.
      Reviewed-by: NMasami Hiramatsu <mhiramat@kernel.org>
      Reviewed-by: NNamhyung Kim <namhyung@kernel.org>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      c94e45bc
    • S
      tracing: Make the snapshot trigger work with instances · 2824f503
      Steven Rostedt (VMware) 提交于
      The snapshot trigger currently only affects the main ring buffer, even when
      it is used by the instances. This can be confusing as the snapshot trigger
      is listed in the instance.
      
       > # cd /sys/kernel/tracing
       > # mkdir instances/foo
       > # echo snapshot > instances/foo/events/syscalls/sys_enter_fchownat/trigger
       > # echo top buffer > trace_marker
       > # echo foo buffer > instances/foo/trace_marker
       > # touch /tmp/bar
       > # chown rostedt /tmp/bar
       > # cat instances/foo/snapshot
       # tracer: nop
       #
       #
       # * Snapshot is freed *
       #
       # Snapshot commands:
       # echo 0 > snapshot : Clears and frees snapshot buffer
       # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated.
       #                      Takes a snapshot of the main buffer.
       # echo 2 > snapshot : Clears snapshot buffer (but does not allocate or free)
       #                      (Doesn't have to be '2' works with any number that
       #                       is not a '0' or '1')
      
       > # cat snapshot
       # tracer: nop
       #
       #                              _-----=> irqs-off
       #                             / _----=> need-resched
       #                            | / _---=> hardirq/softirq
       #                            || / _--=> preempt-depth
       #                            ||| /     delay
       #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
       #              | |       |   ||||       |         |
                   bash-1189  [000] ....   111.488323: tracing_mark_write: top buffer
      
      Not only did the snapshot occur in the top level buffer, but the instance
      snapshot buffer should have been allocated, and it is still free.
      
      Cc: stable@vger.kernel.org
      Fixes: 85f2b082 ("tracing: Add basic event trigger framework")
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      2824f503
  2. 15 3月, 2018 1 次提交
    • S
      tracing: Rewrite filter logic to be simpler and faster · 80765597
      Steven Rostedt (VMware) 提交于
      Al Viro reviewed the filter logic of ftrace trace events and found it to be
      very troubling. It creates a binary tree based on the logic operators and
      walks it during tracing. He sent myself and Tom Zanussi a long explanation
      (and formal proof) of how to do the string parsing better and end up with a
      program array that can be simply iterated to come up with the correct
      results.
      
      I took his ideas and his pseudo code and rewrote the filter logic based on
      them. In doing so, I was able to remove a lot of code, and have a much more
      condensed filter logic in the process. I wrote a very long comment
      describing the methadology that Al proposed in my own words. For more info
      on how this works, read the comment above predicate_parse().
      Suggested-by: NAl Viro <viro@ZenIV.linux.org.uk>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      80765597
  3. 11 3月, 2018 5 次提交
  4. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  5. 25 10月, 2017 1 次提交
    • M
      locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns... · 6aa7de05
      Mark Rutland 提交于
      locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
      
      Please do not apply this to mainline directly, instead please re-run the
      coccinelle script shown below and apply its output.
      
      For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
      preference to ACCESS_ONCE(), and new code is expected to use one of the
      former. So far, there's been no reason to change most existing uses of
      ACCESS_ONCE(), as these aren't harmful, and changing them results in
      churn.
      
      However, for some features, the read/write distinction is critical to
      correct operation. To distinguish these cases, separate read/write
      accessors must be used. This patch migrates (most) remaining
      ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
      coccinelle script:
      
      ----
      // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
      // WRITE_ONCE()
      
      // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
      
      virtual patch
      
      @ depends on patch @
      expression E1, E2;
      @@
      
      - ACCESS_ONCE(E1) = E2
      + WRITE_ONCE(E1, E2)
      
      @ depends on patch @
      expression E;
      @@
      
      - ACCESS_ONCE(E)
      + READ_ONCE(E)
      ----
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: davem@davemloft.net
      Cc: linux-arch@vger.kernel.org
      Cc: mpe@ellerman.id.au
      Cc: shuah@kernel.org
      Cc: snitzer@redhat.com
      Cc: thor.thayer@linux.intel.com
      Cc: tj@kernel.org
      Cc: viro@zeniv.linux.org.uk
      Cc: will.deacon@arm.com
      Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      6aa7de05
  6. 05 10月, 2017 1 次提交
  7. 04 10月, 2017 1 次提交
  8. 20 9月, 2017 1 次提交
  9. 01 9月, 2017 1 次提交
    • S
      tracing: Only have rmmod clear buffers that its events were active in · 065e63f9
      Steven Rostedt (VMware) 提交于
      Currently, when a module event is enabled, when that module is removed, it
      clears all ring buffers. This is to prevent another module from being loaded
      and having one of its trace event IDs from reusing a trace event ID of the
      removed module. This could cause undesirable effects as the trace event of
      the new module would be using its own processing algorithms to process raw
      data of another event. To prevent this, when a module is loaded, if any of
      its events have been used (signified by the WAS_ENABLED event call flag,
      which is never cleared), all ring buffers are cleared, just in case any one
      of them contains event data of the removed event.
      
      The problem is, there's no reason to clear all ring buffers if only one (or
      less than all of them) uses one of the events. Instead, only clear the ring
      buffers that recorded the events of a module that is being removed.
      
      To do this, instead of keeping the WAS_ENABLED flag with the trace event
      call, move it to the per instance (per ring buffer) event file descriptor.
      The event file descriptor maps each event to a separate ring buffer
      instance. Then when the module is removed, only the ring buffers that
      activated one of the module's events get cleared. The rest are not touched.
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      065e63f9
  10. 20 7月, 2017 1 次提交
  11. 28 6月, 2017 1 次提交
    • J
      tracing: Add support for recording tgid of tasks · d914ba37
      Joel Fernandes 提交于
      Inorder to support recording of tgid, the following changes are made:
      
      * Introduce a new API (tracing_record_taskinfo) to additionally record the tgid
        along with the task's comm at the same time. This has has the benefit of not
        setting trace_cmdline_save before all the information for a task is saved.
      * Add a new API tracing_record_taskinfo_sched_switch to record task information
        for 2 tasks at a time (previous and next) and use it from sched_switch probe.
      * Preserve the old API (tracing_record_cmdline) and create it as a wrapper
        around the new one so that existing callers aren't affected.
      * Reuse the existing sched_switch and sched_wakeup probes to record tgid
        information and add a new option 'record-tgid' to enable recording of tgid
      
      When record-tgid option isn't enabled to being with, we take care to make sure
      that there's isn't memory or runtime overhead.
      
      Link: http://lkml.kernel.org/r/20170627020155.5139-1-joelaf@google.com
      
      Cc: kernel-team@android.com
      Cc: Ingo Molnar <mingo@redhat.com>
      Tested-by: NMichael Sartain <mikesart@gmail.com>
      Signed-off-by: NJoel Fernandes <joelaf@google.com>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      d914ba37
  12. 26 6月, 2017 2 次提交
    • S
      ftrace: Have cached module filters be an active filter · 8c08f0d5
      Steven Rostedt (VMware) 提交于
      When a module filter is added to set_ftrace_filter, if the module is not
      loaded, it is cached. This should be considered an active filter, and
      function tracing should be filtered by this. That is, if a cached module
      filter is the only filter set, then no function tracing should be happening,
      as all the functions available will be filtered out.
      
      This makes sense, as the reason to add a cached module filter, is to trace
      the module when you load it. There shouldn't be any other tracing happening
      until then.
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      8c08f0d5
    • S
      ftrace: Add :mod: caching infrastructure to trace_array · 673feb9d
      Steven Rostedt (VMware) 提交于
      This is the start of the infrastructure work to allow for tracing module
      functions before it is loaded.
      
      Currently the following command:
      
        # echo :mod:some-mod > set_ftrace_filter
      
      will enable tracing of all functions within the module "some-mod" if it is
      loaded. What we want, is if the module is not loaded, that line will be
      saved. When the module is loaded, then the "some-mod" will have that line
      executed on it, so that the functions within it starts being traced.
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      673feb9d
  13. 14 6月, 2017 2 次提交
  14. 18 5月, 2017 2 次提交
    • S
      ftrace: Remove #ifdef from code and add clear_ftrace_function_probes() stub · 8a49f3e0
      Steven Rostedt (VMware) 提交于
      No need to add ugly #ifdefs in the code. Having a standard stub file is much
      prettier.
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      8a49f3e0
    • N
      ftrace/instances: Clear function triggers when removing instances · a0e6369e
      Naveen N. Rao 提交于
      If instance directories are deleted while there are registered function
      triggers:
      
        # cd /sys/kernel/debug/tracing/instances
        # mkdir test
        # echo "schedule:enable_event:sched:sched_switch" > test/set_ftrace_filter
        # rmdir test
        Unable to handle kernel paging request for data at address 0x00000008
        Unable to handle kernel paging request for data at address 0x00000008
        Faulting instruction address: 0xc0000000021edde8
        Oops: Kernel access of bad area, sig: 11 [#1]
        SMP NR_CPUS=2048
        NUMA
        pSeries
        Modules linked in: iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 xt_tcpudp tun bridge stp llc kvm iptable_filter fuse binfmt_misc pseries_rng rng_core vmx_crypto ib_iser rdma_cm iw_cm ib_cm ib_core libiscsi scsi_transport_iscsi ip_tables x_tables autofs4 btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c multipath virtio_net virtio_blk virtio_pci crc32c_vpmsum virtio_ring virtio
        CPU: 8 PID: 8694 Comm: rmdir Not tainted 4.11.0-nnr+ #113
        task: c0000000bab52800 task.stack: c0000000baba0000
        NIP: c0000000021edde8 LR: c0000000021f0590 CTR: c000000002119620
        REGS: c0000000baba3870 TRAP: 0300   Not tainted  (4.11.0-nnr+)
        MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE>
          CR: 22002422  XER: 20000000
        CFAR: 00007fffabb725a8 DAR: 0000000000000008 DSISR: 40000000 SOFTE: 0
        GPR00: c00000000220f750 c0000000baba3af0 c000000003157e00 0000000000000000
        GPR04: 0000000000000040 00000000000000eb 0000000000000040 0000000000000000
        GPR08: 0000000000000000 0000000000000113 0000000000000000 c00000000305db98
        GPR12: c000000002119620 c00000000fd42c00 0000000000000000 0000000000000000
        GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
        GPR20: 0000000000000000 0000000000000000 c0000000bab52e90 0000000000000000
        GPR24: 0000000000000000 00000000000000eb 0000000000000040 c0000000baba3bb0
        GPR28: c00000009cb06eb0 c0000000bab52800 c00000009cb06eb0 c0000000baba3bb0
        NIP [c0000000021edde8] ring_buffer_lock_reserve+0x8/0x4e0
        LR [c0000000021f0590] trace_event_buffer_lock_reserve+0xe0/0x1a0
        Call Trace:
        [c0000000baba3af0] [c0000000021f96c8] trace_event_buffer_commit+0x1b8/0x280 (unreliable)
        [c0000000baba3b60] [c00000000220f750] trace_event_buffer_reserve+0x80/0xd0
        [c0000000baba3b90] [c0000000021196b8] trace_event_raw_event_sched_switch+0x98/0x180
        [c0000000baba3c10] [c0000000029d9980] __schedule+0x6e0/0xab0
        [c0000000baba3ce0] [c000000002122230] do_task_dead+0x70/0xc0
        [c0000000baba3d10] [c0000000020ea9c8] do_exit+0x828/0xd00
        [c0000000baba3dd0] [c0000000020eaf70] do_group_exit+0x60/0x100
        [c0000000baba3e10] [c0000000020eb034] SyS_exit_group+0x24/0x30
        [c0000000baba3e30] [c00000000200bcec] system_call+0x38/0x54
        Instruction dump:
        60000000 60420000 7d244b78 7f63db78 4bffaa09 393efff8 793e0020 39200000
        4bfffecc 60420000 3c4c00f7 3842a020 <81230008> 2f890000 409e02f0 a14d0008
        ---[ end trace b917b8985d0e650b ]---
        Unable to handle kernel paging request for data at address 0x00000008
        Faulting instruction address: 0xc0000000021edde8
        Unable to handle kernel paging request for data at address 0x00000008
        Faulting instruction address: 0xc0000000021edde8
        Faulting instruction address: 0xc0000000021edde8
      
      To address this, let's clear all registered function probes before
      deleting the ftrace instance.
      
      Link: http://lkml.kernel.org/r/c5f1ca624043690bd94642bb6bffd3f2fc504035.1494956770.git.naveen.n.rao@linux.vnet.ibm.comReported-by: NMichael Ellerman <mpe@ellerman.id.au>
      Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      a0e6369e
  15. 21 4月, 2017 14 次提交
  16. 19 4月, 2017 1 次提交
    • S
      ftrace: Move the probe function into the tracing directory · ec19b859
      Steven Rostedt (VMware) 提交于
      As nothing outside the tracing directory uses the function probes mechanism,
      I'm moving the prototypes out of the include/linux/ftrace.h and into the
      local kernel/trace/trace.h header. I plan on making them hook to the
      trace_array structure which is local to kernel/trace, and I do not want to
      expose it to the rest of the kernel. This requires that the probe functions
      must also be local to tracing. But luckily nothing else uses them.
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      ec19b859
  17. 18 4月, 2017 2 次提交
  18. 25 3月, 2017 1 次提交