- 09 10月, 2012 2 次提交
-
-
由 David Miller 提交于
We've split up the PTE tables so that they take up half a page instead of a full page. This is in order to facilitate transparent huge page support, which works much better if our PMDs cover 4MB instead of 8MB. What we do is have a one-behind cache for PTE table allocations in the mm struct. This logic triggers only on allocations. For example, we don't try to keep track of free'd up page table blocks in the style that the s390 port does. There were only two slightly annoying aspects to this change: 1) Changing pgtable_t to be a "pte_t *". There's all of this special logic in the TLB free paths that needed adjustments, as did the PMD populate interfaces. 2) init_new_context() needs to zap the pointer, since the mm struct just gets copied from the parent on fork. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Miller 提交于
Narrowing the scope of the page size configurations will make the transparent hugepage changes much simpler. In the end what we really want to do is have the kernel support multiple huge page sizes and use whatever is appropriate as the context dictactes. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 3月, 2012 1 次提交
-
-
由 David Howells 提交于
Disintegrate asm/system.h for Sparc. Signed-off-by: NDavid Howells <dhowells@redhat.com> cc: sparclinux@vger.kernel.org
-
- 26 7月, 2011 1 次提交
-
-
由 David S. Miller 提交于
With the recent mmu_gather changes that included generic RCU freeing of page-tables, it is now quite straightforward to implement gup_fast() on sparc64. This patch: Remove the page table quicklists. They are pointless and make it harder to use RCU page table freeing and share code with other architectures. BTW, this is the second time this has happened, see commit 3c936465 ("[SPARC64]: Kill pgtable quicklists and use SLAB.") Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 6月, 2011 1 次提交
-
-
由 Joe Perches 提交于
Semicolons are not necessary after switch/while/for/if braces so remove them. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 5月, 2011 1 次提交
-
-
由 Peter Zijlstra 提交于
Rework the sparc mmu_gather usage to conform to the new world order :-) Sparc mmu_gather does two things: - tracks vaddrs to unhash - tracks pages to free Split these two things like powerpc has done and keep the vaddrs in per-cpu data structures and flush them on context switch. The remaining bits can then use the generic mmu_gather. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NDavid Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 05 12月, 2008 3 次提交
-
-
由 David S. Miller 提交于
Add a sysctl to tweak the RSS limit used to decide when to grow the TSB for an address space. In order to avoid expensive divides and multiplies only simply positive and negative powers of two are supported. The function computed takes the number of TSB translations that will fit at one time in the TSB of a given size, and either adds or subtracts a percentage of entries. This final value is the RSS limit. See tsb_size_to_rss_limit(). Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Sam Ravnborg 提交于
- move all sparc64/mm/ files to arch/sparc/mm/ - commonly named files are named _64.c - add files to sparc/mm/Makefile preserving link order - delete now unused sparc64/mm/Makefile - sparc64 now finds mm/ in sparc Signed-off-by: NSam Ravnborg <sam@ravnborg.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The kernel always executes in the TSO memory model now, so none of this stuff is necessary any more. With helpful feedback from Nick Piggin. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 8月, 2008 1 次提交
-
-
由 David S. Miller 提交于
Based upon a bug report by Mariusz Kozlowski It uses smp_call_function_masked() now, which has a preemption-disabled requirement. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 7月, 2008 1 次提交
-
-
由 David S. Miller 提交于
Adrian Bunk reported that enabling 4MB page size breaks the build. The problem is that MAX_ORDER combined with the page shift exceeds the SECTION_SIZE_BITS we use in asm-sparc64/sparsemem.h There are several ways I suppose we could work around this. For one we could define a CONFIG_FORCE_MAX_ZONEORDER to decrease MAX_ORDER in these higher page size cases. But I also know that these page size cases are broken wrt. TLB miss handling especially on pre-hypervisor systems, and there isn't an easy way to fix that. These options were meant to be fun experimental hacks anyways, and only 8K and 64K make any sense to support. So remove 512K and 4M base page size support. Of course, we still support these page sizes for huge pages. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 4月, 2008 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 11月, 2007 1 次提交
-
-
由 David S. Miller 提交于
When CONFIG_BUG is turned off, the standard trick of: switch (x) { case X: ... case Y: ... default: BUG(); }; to mark impossible cases does not work because BUG() evalutes to nothing and thus GCC just sees a fallthrough code path. Add an explicit KERN_ERR log message and a do_exit() to trap this case. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 7月, 2007 1 次提交
-
-
由 Paul Mundt 提交于
Slab destructors were no longer supported after Christoph's c59def9f change. They've been BUGs for both slab and slub, and slob never supported them either. This rips out support for the dtor pointer from kmem_cache_create() completely and fixes up every single callsite in the kernel (there were about 224, not including the slab allocator definitions themselves, or the documentation references). Signed-off-by: NPaul Mundt <lethal@linux-sh.org>
-
- 08 5月, 2007 3 次提交
-
-
由 Christoph Lameter 提交于
It is not necessary to tell the slab allocators to align to a cacheline if an explicit alignment was already specified. It is rather confusing to specify multiple alignments. Make sure that the call sites only use one form of alignment. Signed-off-by: NChristoph Lameter <clameter@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christoph Lameter 提交于
This patch was recently posted to lkml and acked by Pekka. The flag SLAB_MUST_HWCACHE_ALIGN is 1. Never checked by SLAB at all. 2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB 3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB. The only remaining use is in sparc64 and ppc64 and their use there reflects some earlier role that the slab flag once may have had. If its specified then SLAB_HWCACHE_ALIGN is also specified. The flag is confusing, inconsistent and has no purpose. Remove it. Acked-by: NPekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: NChristoph Lameter <clameter@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Miller 提交于
I ported this to sparc64 as per the patch below, tested on UP SunBlade1500 and 24 cpu Niagara T1000. Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NChristoph Lameter <clameter@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 12月, 2006 1 次提交
-
-
由 Christoph Lameter 提交于
Replace all uses of kmem_cache_t with struct kmem_cache. The patch was generated using the following script: #!/bin/sh # # Replace one string by another in all the kernel sources. # set -e for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do quilt add $file sed -e "1,\$s/$1/$2/g" $file >/tmp/$$ mv /tmp/$$ $file quilt refresh done The script was run like this sh replace kmem_cache_t "struct kmem_cache" Signed-off-by: NChristoph Lameter <clameter@sgi.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 22 3月, 2006 1 次提交
-
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 3月, 2006 19 次提交
-
-
由 David S. Miller 提交于
We only need to write an invalid tag every 16 bytes, so taking advantage of this can save many instructions compared to the simple memset() call we make now. A prefetching implementation is implemented for sun4u and a block-init store version if implemented for Niagara. The next trick is to be able to perform an init and a copy_tsb() in parallel when growing a TSB table. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Try only lightly on > 1 order allocations. If a grow fails, we are under memory pressure, so do not try to grow the TSB for this address space any more. If a > 0 order TSB allocation fails on a new fork, retry using a 0 order allocation. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This is good for up to %50 performance improvement of some test cases. The problem has been the race conditions, and hopefully I've plugged them all up here. 1) There was a serious race in switch_mm() wrt. lazy TLB switching to and from kernel threads. We could erroneously skip a tsb_context_switch() and thus use a stale TSB across a TSB grow event. There is a big comment now in that function describing exactly how it can happen. 2) All code paths that do something with the TSB need to be guarded with the mm->context.lock spinlock. This makes page table flushing paths properly synchronize with both TSB growing and TLB context changes. 3) TSB growing events are moved to the end of successful fault processing. Previously it was in update_mmu_cache() but that is deadlock prone. At the end of do_sparc64_fault() we hold no spinlocks that could deadlock the TSB grow sequence. We also have dropped the address space semaphore. While we're here, add prefetching to the copy_tsb() routine and put it in assembler into the tsb.S file. This piece of code is quite time critical. There are some small negative side effects to this code which can be improved upon. In particular we grab the mm->context.lock even for the tsb insert done by update_mmu_cache() now and that's a bit excessive. We can get rid of that locking, and the same lock taking in flush_tsb_user(), by disabling PSTATE_IE around the whole operation including the capturing of the tsb pointer and tsb_nentries value. That would work because anyone growing the TSB won't free up the old TSB until all cpus respond to the TSB change cross call. I'm not quite so confident in that optimization to put it in right now, but eventually we might be able to and the description is here for reference. This code seems very solid now. It passes several parallel GCC bootstrap builds, and our favorite "nut cruncher" stress test which is a full "make -j8192" build of a "make allmodconfig" kernel. That puts about 256 processes on each cpu's run queue, makes lots of process cpu migrations occur, causes lots of page table and TLB flushing activity, incurs many context version number changes, and it swaps the machine real far out to disk even though there is 16GB of ram on this test system. :-) Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
1) Always spin_lock_init() in init_context(). The caller essentially clears it out, or copies the mm info from the parent. In both cases we need to explicitly initialize the spinlock. 2) Always do explicit IRQ disabling while taking mm->context.lock and ctx_alloc_lock. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
get_new_mmu_context() can be invoked from interrupt context now for the new SMP version wrap handling. So disable interrupt while taking ctx_alloc_lock in destroy_context() so we don't deadlock. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The SUN4V convention with non-shared TSBs is that the context bit of the TAG is clear. So we have to choose an "invalid" bit and initialize new TSBs appropriately. Otherwise a zero TAG looks "valid". Make sure, for the window fixup cases, that we use the right global registers and that we don't potentially trample on the live global registers in etrap/rtrap handling (%g2 and %g6) and that we put the missing virtual address properly in %g5. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Needs to use physical addressing just like cheetah_plus. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Yes, you heard it right, they changed the PTE layout for SUN4V. Ho hum... This is the simple and inefficient way to support this. It'll get optimized, don't worry. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
There are several tricky races involved with growing the TSB. So just use base-size TSBs for user contexts and we can revisit enabling this later. One part of the SMP problems is that tsb_context_switch() can see partially updated TSB configuration state if tsb_grow() is running in parallel. That's easily solved with a seqlock taken as a writer by tsb_grow() and taken as a reader to capture all the TSB config state in tsb_context_switch(). Then there is flush_tsb_user() running in parallel with a tsb_grow(). In theory we could take the seqlock as a reader there too, and just resample the TSB pointer and reflush but that looks really ugly. Lastly, I believe there is a case with threads that results in a TSB entry lock bit being set spuriously which will cause the next access to that TSB entry to wedge the cpu (since the TSB entry lock bit will never clear). It's either copy_tsb() or some bug elsewhere in the TSB assembly. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This way we don't need to lock the TSB into the TLB. The trick is that every TSB load/store is registered into a special instruction patch section. The default uses virtual addresses, and the patch instructions use physical address load/stores. We can't do this on all chips because only cheetah+ and later have the physical variant of the atomic quad load. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
The TSB_LOCK_BIT define is actually a special value shifted down by 32-bits for the assembler code macros. In C code, this isn't what we want. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
As the RSS grows, grow the TSB in order to reduce the likelyhood of hash collisions and thus poor hit rates in the TSB. This definitely needs some serious tuning. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
This also cleans up tsb_context_switch(). The assembler routine is now __tsb_context_switch() and the former is an inline function that picks out the bits from the mm_struct and passes it into the assembler code as arguments. setup_tsb_parms() computes the locked TLB entry to map the TSB. Later when we support using the physical address quad load instructions of Cheetah+ and later, we'll simply use the physical address for the TSB register value and set the map virtual and PTE both to zero. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
Move {init_new,destroy}_context() out of line. Do not put huge pages into the TSB, only base page size translations. There are some clever things we could do here, but for now let's be correct instead of fancy. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 David S. Miller 提交于
We now use the TSB hardware assist features of the UltraSPARC MMUs. SMP is currently knowingly broken, we need to find another place to store the per-cpu base pointers. We hid them away in the TSB base register, and that obviously will not work any more :-) Another known broken case is non-8KB base page size. Also noticed that flush_tlb_all() is not referenced anywhere, only the internal __flush_tlb_all() (local cpu only) is used by the sparc64 port, so we can get rid of flush_tlb_all(). The kernel gets it's own 8KB TSB (swapper_tsb) and each address space gets it's own private 8K TSB. Later we can add code to dynamically increase the size of per-process TSB as the RSS grows. An 8KB TSB is good enough for up to about a 4MB RSS, after which the TSB starts to incur many capacity and conflict misses. We even accumulate OBP translations into the kernel TSB. Another area for refinement is large page size support. We could use a secondary address space TSB to handle those. Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-