1. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  2. 12 10月, 2017 1 次提交
    • V
      ARC: unbork module link errors with !CONFIG_ARC_HAS_LLSC · fdbed196
      Vineet Gupta 提交于
      |  SYSMAP  System.map
      |  Building modules, stage 2.
      |  MODPOST 18 modules
      |ERROR: "smp_atomic_ops_lock" [drivers/gpu/drm/drm_kms_helper.ko] undefined!
      |ERROR: "smp_bitops_lock" [drivers/gpu/drm/drm_kms_helper.ko] undefined!
      |ERROR: "smp_atomic_ops_lock" [drivers/gpu/drm/drm.ko] undefined!
      | ERROR: "smp_bitops_lock" [drivers/gpu/drm/drm.ko] undefined!
      |../scripts/Makefile.modpost:91: recipe for target '__modpost' failed
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      fdbed196
  3. 04 10月, 2017 2 次提交
  4. 14 9月, 2017 1 次提交
    • M
      mm: treewide: remove GFP_TEMPORARY allocation flag · 0ee931c4
      Michal Hocko 提交于
      GFP_TEMPORARY was introduced by commit e12ba74d ("Group short-lived
      and reclaimable kernel allocations") along with __GFP_RECLAIMABLE.  It's
      primary motivation was to allow users to tell that an allocation is
      short lived and so the allocator can try to place such allocations close
      together and prevent long term fragmentation.  As much as this sounds
      like a reasonable semantic it becomes much less clear when to use the
      highlevel GFP_TEMPORARY allocation flag.  How long is temporary? Can the
      context holding that memory sleep? Can it take locks? It seems there is
      no good answer for those questions.
      
      The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
      __GFP_RECLAIMABLE which in itself is tricky because basically none of
      the existing caller provide a way to reclaim the allocated memory.  So
      this is rather misleading and hard to evaluate for any benefits.
      
      I have checked some random users and none of them has added the flag
      with a specific justification.  I suspect most of them just copied from
      other existing users and others just thought it might be a good idea to
      use without any measuring.  This suggests that GFP_TEMPORARY just
      motivates for cargo cult usage without any reasoning.
      
      I believe that our gfp flags are quite complex already and especially
      those with highlevel semantic should be clearly defined to prevent from
      confusion and abuse.  Therefore I propose dropping GFP_TEMPORARY and
      replace all existing users to simply use GFP_KERNEL.  Please note that
      SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
      so they will be placed properly for memory fragmentation prevention.
      
      I can see reasons we might want some gfp flag to reflect shorterm
      allocations but I propose starting from a clear semantic definition and
      only then add users with proper justification.
      
      This was been brought up before LSF this year by Matthew [1] and it
      turned out that GFP_TEMPORARY really doesn't have a clear semantic.  It
      seems to be a heuristic without any measured advantage for most (if not
      all) its current users.  The follow up discussion has revealed that
      opinions on what might be temporary allocation differ a lot between
      developers.  So rather than trying to tweak existing users into a
      semantic which they haven't expected I propose to simply remove the flag
      and start from scratch if we really need a semantic for short term
      allocations.
      
      [1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
      
      [akpm@linux-foundation.org: fix typo]
      [akpm@linux-foundation.org: coding-style fixes]
      [sfr@canb.auug.org.au: drm/i915: fix up]
        Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
      Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Neil Brown <neilb@suse.de>
      Cc: "Theodore Ts'o" <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ee931c4
  5. 02 9月, 2017 3 次提交
    • J
      ARC: Re-enable MMU upon Machine Check exception · 1ee55a8f
      Jose Abreu 提交于
      I recently came upon a scenario where I would get a double fault
      machine check exception tiriggered by a kernel module.
      However the ensuing crash stacktrace (ksym lookup) was not working
      correctly.
      
      Turns out that machine check auto-disables MMU while modules are allocated
      in kernel vaddr spapce.
      
      This patch re-enables the MMU before start printing the stacktrace
      making stacktracing of modules work upon a fatal exception.
      
      Cc: stable@kernel.org
      Signed-off-by: NJose Abreu <joabreu@synopsys.com>
      Reviewed-by: NAlexey Brodkin <abrodkin@synopsys.com>
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      [vgupta: moved code into low level handler to avoid in 2 places]
      1ee55a8f
    • J
      ARC: Show fault information passed to show_kernel_fault_diag() · aa7e3a5e
      Jose Abreu 提交于
      Currently we pass a string argument to show_kernel_fault_diag() which
      describes the reason for the fault. This is not being used so just
      add a pr_info() which outputs the fault information.
      
      With this change we get from:
      
      |
      | Path: /bin/busybox
      | CPU: 0 PID: 92 Comm: modprobe Not tainted 4.12.0-rc6 #30
      | task: 9a254780 task.stack: 9a212000
      |
      | [ECR   ]: 0x00200400 => Other Fatal Err
      |
      
      to:
      
      |
      | Unhandled Machine Check Exception
      | Path: /bin/busybox
      | CPU: 0 PID: 92 Comm: modprobe Not tainted 4.12.0-rc6 #37
      | task: 9a240780 task.stack: 9a226000
      |
      |[ECR   ]: 0x00200400 => Machine Check (Other Fatal Err)
      |
      
      Which can help debugging.
      
      Cc: Alexey Brodkin <abrodkin@synopsys.com>
      Signed-off-by: NJose Abreu <joabreu@synopsys.com>
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      aa7e3a5e
    • A
      ARC: [plat-hsdk] initial port for HSDK board · a518d637
      Alexey Brodkin 提交于
      This initial port adds support of ARC HS Development Kit board with some
      basic features such serial port, USB, SD/MMC and Ethernet.
      
      Essentially we run Linux kernel on all 4 cores (i.e. utilize SMP) and
      heavily use IO Coherency for speeding-up DMA-aware peripherals.
      
      Note as opposed to other ARC boards we link Linux kernel to
      0x9000_0000 intentionally because cores 1 and 3 configured with DCCM
      situated at our more usual link base 0x8000_0000. We still can use
      memory region starting at 0x8000_0000 as we reallocate DCCM in our
      platform code.
      
      Note that PAE remapping for DMA clients does not work due to an RTL bug,
      so CREG_PAE register must be programmed to all zeroes, otherwise it will
      cause problems with DMA to/from peripherals even if PAE40 is not used.
      Acked-by: NRob Herring <robh@kernel.org>
      Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com>
      Signed-off-by: NEugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      a518d637
  6. 29 8月, 2017 7 次提交
  7. 11 8月, 2017 1 次提交
    • A
      arc: Mask individual IRQ lines during core INTC init · a8ec3ee8
      Alexey Brodkin 提交于
      ARC cores on reset have all interrupt lines of built-in INTC enabled.
      Which means once we globally enable interrupts (very early on boot)
      faulty hardware blocks may trigger an interrupt that Linux kernel
      cannot handle yet as corresponding handler is not yet installed.
      
      In that case system falls in "interrupt storm" and basically never
      does anything useful except entering and exiting generic IRQ handling
      code.
      
      One real example of that kind of problematic hardware is DW GMAC which
      also has interrupts enabled on reset and if Ethernet PHY informs GMAC
      about link state, GMAC immediately reports that upstream to ARC core
      and here we are.
      
      Now with that change we mask all individual IRQ lines making entire
      system more fool-proof.
      
      [This patch was motivated by Adaptrum platform support]
      Signed-off-by: NAlexey Brodkin <abrodkin@synopsys.com>
      Cc: Eugeniy Paltsev <paltsev@synopsys.com>
      Tested-by: NAlexandru Gagniuc <alex.g@adaptrum.com>
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      a8ec3ee8
  8. 03 8月, 2017 3 次提交
  9. 14 6月, 2017 1 次提交
  10. 09 5月, 2017 1 次提交
  11. 04 5月, 2017 1 次提交
  12. 21 4月, 2017 1 次提交
    • V
      ARCv2: entry: save Accumulator register pair (r58:59) if present · 3d5e8012
      Vineet Gupta 提交于
      Accumulator is present in configs with FPU and/or DSP MPY (mpy > 6)
      
      Instead of doing this in pt_regs (and thus every kernel entry/exit),
      this could have been done in context switch (and for user task only) as
      currently kernel doesn't clobber these registers for its own accord.
      However we will soon start using 64-bit multiply instructions for kernel
      which can clobber these. Also gcc folks also plan to start using these
      as GPRs, hence better to always save/restore them
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      3d5e8012
  13. 21 3月, 2017 1 次提交
  14. 06 3月, 2017 1 次提交
    • V
      ARC: get rate from clk driver instead of reading device tree · 7f35144c
      Vlad Zakharov 提交于
      We were reading clock rate directly from device tree "clock-frequency"
      property of corresponding clock node in show_cpuinfo function.
      
      Such approach is correct only in case cpu is always clocked by
      "fixed-clock". If we use clock driver that allows rate to be changed
      this won't work as rate may change during the time or even
      "clock-frequency" property may not be presented at all.
      
      So this commit replaces reading device tree with getting rate from clock
      driver. This approach is much more flexible and will work for both fixed
      and mutable clocks.
      Signed-off-by: NVlad Zakharov <vzakhar@synopsys.com>
      Signed-off-by: NVineet Gupta <vgupta@synopsys.com>
      7f35144c
  15. 03 3月, 2017 1 次提交
    • I
      sched/headers: Move task->mm handling methods to <linux/sched/mm.h> · 68e21be2
      Ingo Molnar 提交于
      Move the following task->mm helper APIs into a new header file,
      <linux/sched/mm.h>, to further reduce the size and complexity
      of <linux/sched.h>.
      
      Here are how the APIs are used in various kernel files:
      
        # mm_alloc():
        arch/arm/mach-rpc/ecard.c
        fs/exec.c
        include/linux/sched/mm.h
        kernel/fork.c
      
        # __mmdrop():
        arch/arc/include/asm/mmu_context.h
        include/linux/sched/mm.h
        kernel/fork.c
      
        # mmdrop():
        arch/arm/mach-rpc/ecard.c
        arch/m68k/sun3/mmu_emu.c
        arch/x86/mm/tlb.c
        drivers/gpu/drm/amd/amdkfd/kfd_process.c
        drivers/gpu/drm/i915/i915_gem_userptr.c
        drivers/infiniband/hw/hfi1/file_ops.c
        drivers/vfio/vfio_iommu_spapr_tce.c
        fs/exec.c
        fs/proc/base.c
        fs/proc/task_mmu.c
        fs/proc/task_nommu.c
        fs/userfaultfd.c
        include/linux/mmu_notifier.h
        include/linux/sched/mm.h
        kernel/fork.c
        kernel/futex.c
        kernel/sched/core.c
        mm/khugepaged.c
        mm/ksm.c
        mm/mmu_context.c
        mm/mmu_notifier.c
        mm/oom_kill.c
        virt/kvm/kvm_main.c
      
        # mmdrop_async_fn():
        include/linux/sched/mm.h
      
        # mmdrop_async():
        include/linux/sched/mm.h
        kernel/fork.c
      
        # mmget_not_zero():
        fs/userfaultfd.c
        include/linux/sched/mm.h
        mm/oom_kill.c
      
        # mmput():
        arch/arc/include/asm/mmu_context.h
        arch/arc/kernel/troubleshoot.c
        arch/frv/mm/mmu-context.c
        arch/powerpc/platforms/cell/spufs/context.c
        arch/sparc/include/asm/mmu_context_32.h
        drivers/android/binder.c
        drivers/gpu/drm/etnaviv/etnaviv_gem.c
        drivers/gpu/drm/i915/i915_gem_userptr.c
        drivers/infiniband/core/umem.c
        drivers/infiniband/core/umem_odp.c
        drivers/infiniband/core/uverbs_main.c
        drivers/infiniband/hw/mlx4/main.c
        drivers/infiniband/hw/mlx5/main.c
        drivers/infiniband/hw/usnic/usnic_uiom.c
        drivers/iommu/amd_iommu_v2.c
        drivers/iommu/intel-svm.c
        drivers/lguest/lguest_user.c
        drivers/misc/cxl/fault.c
        drivers/misc/mic/scif/scif_rma.c
        drivers/oprofile/buffer_sync.c
        drivers/vfio/vfio_iommu_type1.c
        drivers/vhost/vhost.c
        drivers/xen/gntdev.c
        fs/exec.c
        fs/proc/array.c
        fs/proc/base.c
        fs/proc/task_mmu.c
        fs/proc/task_nommu.c
        fs/userfaultfd.c
        include/linux/sched/mm.h
        kernel/cpuset.c
        kernel/events/core.c
        kernel/events/uprobes.c
        kernel/exit.c
        kernel/fork.c
        kernel/ptrace.c
        kernel/sys.c
        kernel/trace/trace_output.c
        kernel/tsacct.c
        mm/memcontrol.c
        mm/memory.c
        mm/mempolicy.c
        mm/migrate.c
        mm/mmu_notifier.c
        mm/nommu.c
        mm/oom_kill.c
        mm/process_vm_access.c
        mm/rmap.c
        mm/swapfile.c
        mm/util.c
        virt/kvm/async_pf.c
      
        # mmput_async():
        include/linux/sched/mm.h
        kernel/fork.c
        mm/oom_kill.c
      
        # get_task_mm():
        arch/arc/kernel/troubleshoot.c
        arch/powerpc/platforms/cell/spufs/context.c
        drivers/android/binder.c
        drivers/gpu/drm/etnaviv/etnaviv_gem.c
        drivers/infiniband/core/umem.c
        drivers/infiniband/core/umem_odp.c
        drivers/infiniband/hw/mlx4/main.c
        drivers/infiniband/hw/mlx5/main.c
        drivers/infiniband/hw/usnic/usnic_uiom.c
        drivers/iommu/amd_iommu_v2.c
        drivers/iommu/intel-svm.c
        drivers/lguest/lguest_user.c
        drivers/misc/cxl/fault.c
        drivers/misc/mic/scif/scif_rma.c
        drivers/oprofile/buffer_sync.c
        drivers/vfio/vfio_iommu_type1.c
        drivers/vhost/vhost.c
        drivers/xen/gntdev.c
        fs/proc/array.c
        fs/proc/base.c
        fs/proc/task_mmu.c
        include/linux/sched/mm.h
        kernel/cpuset.c
        kernel/events/core.c
        kernel/exit.c
        kernel/fork.c
        kernel/ptrace.c
        kernel/sys.c
        kernel/trace/trace_output.c
        kernel/tsacct.c
        mm/memcontrol.c
        mm/memory.c
        mm/mempolicy.c
        mm/migrate.c
        mm/mmu_notifier.c
        mm/nommu.c
        mm/util.c
      
        # mm_access():
        fs/proc/base.c
        include/linux/sched/mm.h
        kernel/fork.c
        mm/process_vm_access.c
      
        # mm_release():
        arch/arc/include/asm/mmu_context.h
        fs/exec.c
        include/linux/sched/mm.h
        include/uapi/linux/sched.h
        kernel/exit.c
        kernel/fork.c
      Acked-by: NLinus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-kernel@vger.kernel.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      68e21be2
  16. 02 3月, 2017 5 次提交
  17. 28 2月, 2017 3 次提交
  18. 08 2月, 2017 1 次提交
  19. 07 2月, 2017 5 次提交