- 29 5月, 2018 2 次提交
-
-
由 Rafael J. Wysocki 提交于
The extra forward declaration of pm_qos_get_value() is redundant, so drop it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> -
由 Steven Rostedt (VMware) 提交于
The snapshot trigger currently only affects the main ring buffer, even when it is used by the instances. This can be confusing as the snapshot trigger is listed in the instance. > # cd /sys/kernel/tracing > # mkdir instances/foo > # echo snapshot > instances/foo/events/syscalls/sys_enter_fchownat/trigger > # echo top buffer > trace_marker > # echo foo buffer > instances/foo/trace_marker > # touch /tmp/bar > # chown rostedt /tmp/bar > # cat instances/foo/snapshot # tracer: nop # # # * Snapshot is freed * # # Snapshot commands: # echo 0 > snapshot : Clears and frees snapshot buffer # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated. # Takes a snapshot of the main buffer. # echo 2 > snapshot : Clears snapshot buffer (but does not allocate or free) # (Doesn't have to be '2' works with any number that # is not a '0' or '1') > # cat snapshot # tracer: nop # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | bash-1189 [000] .... 111.488323: tracing_mark_write: top buffer Not only did the snapshot occur in the top level buffer, but the instance snapshot buffer should have been allocated, and it is still free. Cc: stable@vger.kernel.org Fixes: 85f2b082 ("tracing: Add basic event trigger framework") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 28 5月, 2018 1 次提交
-
-
由 Steven Rostedt (VMware) 提交于
If a instance has an event trigger enabled when it is freed, it could cause an access of free memory. Here's the case that crashes: # cd /sys/kernel/tracing # mkdir instances/foo # echo snapshot > instances/foo/events/initcall/initcall_start/trigger # rmdir instances/foo Would produce: general protection fault: 0000 [#1] PREEMPT SMP PTI Modules linked in: tun bridge ... CPU: 5 PID: 6203 Comm: rmdir Tainted: G W 4.17.0-rc4-test+ #933 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:clear_event_triggers+0x3b/0x70 RSP: 0018:ffffc90003783de0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b2b RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800c7130ba0 RBP: ffffc90003783e00 R08: ffff8801131993f8 R09: 0000000100230016 R10: ffffc90003783d80 R11: 0000000000000000 R12: ffff8800c7130ba0 R13: ffff8800c7130bd8 R14: ffff8800cc093768 R15: 00000000ffffff9c FS: 00007f6f4aa86700(0000) GS:ffff88011eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6f4a5aed60 CR3: 00000000cd552001 CR4: 00000000001606e0 Call Trace: event_trace_del_tracer+0x2a/0xc5 instance_rmdir+0x15c/0x200 tracefs_syscall_rmdir+0x52/0x90 vfs_rmdir+0xdb/0x160 do_rmdir+0x16d/0x1c0 __x64_sys_rmdir+0x17/0x20 do_syscall_64+0x55/0x1a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe This was due to the call the clears out the triggers when an instance is being deleted not removing the trigger from the link list. Cc: stable@vger.kernel.org Fixes: 85f2b082 ("tracing: Add basic event trigger framework") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 27 5月, 2018 4 次提交
-
-
由 Tetsuo Handa 提交于
syzbot is reporting NULL pointer dereference at snapshot_write() [1]. This is because data->handle is zero-cleared by ioctl(SNAPSHOT_FREE). Fix this by checking data_of(data->handle) != NULL before using it. [1] https://syzkaller.appspot.com/bug?id=828a3c71bd344a6de8b6a31233d51a72099f27fdSigned-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: Nsyzbot <syzbot+ae590932da6e45d6564d@syzkaller.appspotmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
The `s2idle_lock' is acquired during suspend while interrupts are disabled even on RT. The lock is acquired for short sections only. Make it a RAW lock which avoids "sleeping while atomic" warnings on RT. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
s2idle_wait_head is used during s2idle with interrupts disabled even on RT. There is no "custom" wake up function so swait could be used instead which is also lower weight compared to the wait_queue. Make s2idle_wait_head a swait_queue_head. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Thomas Gleixner 提交于
timekeeping suspend/resume calls read_persistent_clock() which takes rtc_lock. That results in might sleep warnings because at that point we run with interrupts disabled. We cannot convert rtc_lock to a raw spinlock as that would trigger other might sleep warnings. As a workaround we disable the might sleep warnings by setting system_state to SYSTEM_SUSPEND before calling sysdev_suspend() and restoring it to SYSTEM_RUNNING afer sysdev_resume(). There is no lock contention because hibernate / suspend to RAM is single-CPU at this point. In s2idle's case the system_state is set to SYSTEM_SUSPEND before timekeeping_suspend() which is invoked by the last CPU. In the resume case it set back to SYSTEM_RUNNING after timekeeping_resume() which is invoked by the first CPU in the resume case. The other CPUs will block on tick_freeze_lock. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> [bigeasy: cover s2idle in tick_freeze() / tick_unfreeze()] Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 26 5月, 2018 1 次提交
-
-
由 Gustavo A. R. Silva 提交于
`resource' can be controlled by user-space, hence leading to a potential exploitation of the Spectre variant 1 vulnerability. This issue was detected with the help of Smatch: kernel/sys.c:1474 __do_compat_sys_old_getrlimit() warn: potential spectre issue 'get_current()->signal->rlim' (local cap) kernel/sys.c:1455 __do_sys_old_getrlimit() warn: potential spectre issue 'get_current()->signal->rlim' (local cap) Fix this by sanitizing *resource* before using it to index current->signal->rlim Notice that given that speculation windows are large, the policy is to kill the speculation on the first load and not worry if it can be completed with a dependent load/store [1]. [1] https://marc.info/?l=linux-kernel&m=152449131114778&w=2 Link: http://lkml.kernel.org/r/20180515030038.GA11822@embeddedor.comSigned-off-by: NGustavo A. R. Silva <gustavo@embeddedor.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2018 2 次提交
-
-
由 Peter Zijlstra 提交于
The following commit: 85f1abe0 ("kthread, sched/wait: Fix kthread_parkme() completion issue") added a WARN() in the case where we call kthread_park() on an already parked thread, because the old code wasn't doing the right thing there and it wasn't at all clear that would happen. It turns out, this does in fact happen, so we have to deal with it. Instead of potentially returning early, also wait for the completion. This does however mean we have to use complete_all() and re-initialize the completion on re-use. Reported-by: NLKP <lkp@01.org> Tested-by: NMeelis Roos <mroos@linux.ee> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kernel test robot <lkp@intel.com> Cc: wfg@linux.intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 85f1abe0 ("kthread, sched/wait: Fix kthread_parkme() completion issue") Link: http://lkml.kernel.org/r/20180504091142.GI12235@hirez.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
When scheduler debug is enabled, building scheduling domains outputs information about how the domains are laid out and to which root domain each CPU (or sets of CPUs) belongs, e.g.: CPU0 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 } CPU1 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 } [...] span: 0-5 (max cpu_capacity = 1024) The fact that latest line refers to CPUs 0-5 root domain doesn't however look immediately obvious to me: one might wonder why span 0-5 is reported "again". Make it more clear by adding "root domain" to it, as to end with the following: CPU0 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 } CPU1 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 } [...] root domain span: 0-5 (max cpu_capacity = 1024) Signed-off-by: NJuri Lelli <juri.lelli@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180524152936.17611-1-juri.lelli@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 5月, 2018 2 次提交
-
-
由 Daniel Borkmann 提交于
While reviewing the verifier code, I recently noticed that the following two program variants in relation to tail calls can be loaded. Variant 1: # bpftool p d x i 15 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:5] 3: (05) goto pc+2 4: (18) r2 = map[id:6] 6: (b7) r3 = 7 7: (35) if r3 >= 0xa0 goto pc+2 8: (54) (u32) r3 &= (u32) 255 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 5 5: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B # bpftool m s i 6 6: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B Variant 2: # bpftool p d x i 20 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:8] 3: (05) goto pc+2 4: (18) r2 = map[id:7] 6: (b7) r3 = 7 7: (35) if r3 >= 0x4 goto pc+2 8: (54) (u32) r3 &= (u32) 3 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 8 8: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B # bpftool m s i 7 7: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B In both cases the index masking inserted by the verifier in order to control out of bounds speculation from a CPU via b2157399 ("bpf: prevent out-of-bounds speculation") seems to be incorrect in what it is enforcing. In the 1st variant, the mask is applied from the map with the significantly larger number of entries where we would allow to a certain degree out of bounds speculation for the smaller map, and in the 2nd variant where the mask is applied from the map with the smaller number of entries, we get buggy behavior since we truncate the index of the larger map. The original intent from commit b2157399 is to reject such occasions where two or more different tail call maps are used in the same tail call helper invocation. However, the check on the BPF_MAP_PTR_POISON is never hit since we never poisoned the saved pointer in the first place! We do this explicitly for map lookups but in case of tail calls we basically used the tail call map in insn_aux_data that was processed in the most recent path which the verifier walked. Thus any prior path that stored a pointer in insn_aux_data at the helper location was always overridden. Fix it by moving the map pointer poison logic into a small helper that covers both BPF helpers with the same logic. After that in fixup_bpf_calls() the poison check is then hit for tail calls and the program rejected. Latter only happens in unprivileged case since this is the *only* occasion where a rewrite needs to happen, and where such rewrite is specific to the map (max_entries, index_mask). In the privileged case the rewrite is generic for the insn->imm / insn->code update so multiple maps from different paths can be handled just fine since all the remaining logic happens in the instruction processing itself. This is similar to the case of map lookups: in case there is a collision of maps in fixup_bpf_calls() we must skip the inlined rewrite since this will turn the generic instruction sequence into a non- generic one. Thus the patch_call_imm will simply update the insn->imm location where the bpf_map_lookup_elem() will later take care of the dispatch. Given we need this 'poison' state as a check, the information of whether a map is an unpriv_array gets lost, so enforcing it prior to that needs an additional state. In general this check is needed since there are some complex and tail call intensive BPF programs out there where LLVM tends to generate such code occasionally. We therefore convert the map_ptr rather into map_state to store all this w/o extra memory overhead, and the bit whether one of the maps involved in the collision was from an unpriv_array thus needs to be retained as well there. Fixes: b2157399 ("bpf: prevent out-of-bounds speculation") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> -
由 Rafael J. Wysocki 提交于
Commit 152db033 (schedutil: Allow cpufreq requests to be made even when kthread kicked) made changes to prevent utilization updates from being discarded during processing a previous request, but it left a small window in which that still can happen in the one-CPU policy case. Namely, updates coming in after setting work_in_progress in sugov_update_commit() and clearing it in sugov_work() will still be dropped due to the work_in_progress check in sugov_update_single(). To close that window, rearrange the code so as to acquire the update lock around the deferred update branch in sugov_update_single() and drop the work_in_progress check from it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NJuri Lelli <juri.lelli@redhat.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NJoel Fernandes (Google) <joel@joelfernandes.org>
-
- 23 5月, 2018 2 次提交
-
-
由 Joel Fernandes (Google) 提交于
Currently there is a chance of a schedutil cpufreq update request to be dropped if there is a pending update request. This pending request can be delayed if there is a scheduling delay of the irq_work and the wake up of the schedutil governor kthread. A very bad scenario is when a schedutil request was already just made, such as to reduce the CPU frequency, then a newer request to increase CPU frequency (even sched deadline urgent frequency increase requests) can be dropped, even though the rate limits suggest that its Ok to process a request. This is because of the way the work_in_progress flag is used. This patch improves the situation by allowing new requests to happen even though the old one is still being processed. Note that in this approach, if an irq_work was already issued, we just update next_freq and don't bother to queue another request so there's no extra work being done to make this happen. Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NJuri Lelli <juri.lelli@redhat.com> Signed-off-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
This routine checks if the CPU running this code belongs to the policy of the target CPU or if not, can it do remote DVFS for it remotely. But the current name of it implies as if it is only about doing remote updates. Rename it to make it more relevant. Suggested-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 22 5月, 2018 2 次提交
-
-
由 Patrick Bellasi 提交于
The iowait boosting code has been recently updated to add a progressive boosting behavior which allows to be less aggressive in boosting tasks doing only sporadic IO operations, thus being more energy efficient for example on mobile platforms. The current code is now however a bit convoluted. Some functionalities (e.g. iowait boost reset) are replicated in different paths and their documentation is slightly misaligned. Let's cleanup the code by consolidating all the IO wait boosting related functionality within within few dedicated functions and better define their role: - sugov_iowait_boost: set/increase the IO wait boost of a CPU - sugov_iowait_apply: apply/reduce the IO wait boost of a CPU Both these two function are used at every sugov update and they make use of a unified IO wait boost reset policy provided by: - sugov_iowait_reset: reset/disable the IO wait boost of a CPU if a CPU is not updated for more then one tick This makes possible a cleaner and more self-contained design for the IO wait boosting code since the rest of the sugov update routines, both for single and shared frequency domains, follow the same template: /* Configure IO boost, if required */ sugov_iowait_boost() /* Return here if freq change is in progress or throttled */ /* Collect and aggregate utilization information */ sugov_get_util() sugov_aggregate_util() /* * Add IO boost, if currently enabled, on top of the aggregated * utilization value */ sugov_iowait_apply() As a extra bonus, let's also add the documentation for the new functions and better align the in-code documentation. Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Reviewed-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> -
由 Patrick Bellasi 提交于
A more energy efficient update of the IO wait boosting mechanism has been introduced in: commit a5a0809b ("cpufreq: schedutil: Make iowait boost more energy efficient") where the boost value is expected to be: - doubled at each successive wakeup from IO staring from the minimum frequency supported by a CPU - reset when a CPU is not updated for more then one tick by either disabling the IO wait boost or resetting its value to the minimum frequency if this new update requires an IO boost. This approach is supposed to "ignore" boosting for sporadic wakeups from IO, while still getting the frequency boosted to the maximum to benefit long sequence of wakeup from IO operations. However, these assumptions are not always satisfied. For example, when an IO boosted CPU enters idle for more the one tick and then wakes up after an IO wait, since in sugov_set_iowait_boost() we first check the IOWAIT flag, we keep doubling the iowait boost instead of restarting from the minimum frequency value. This misbehavior could happen mainly on non-shared frequency domains, thus defeating the energy efficiency optimization, but it can also happen on shared frequency domain systems. Let fix this issue in sugov_set_iowait_boost() by: - first check the IO wait boost reset conditions to eventually reset the boost value - then applying the correct IO boost value if required by the caller Fixes: a5a0809b (cpufreq: schedutil: Make iowait boost more energy efficient) Reported-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NPatrick Bellasi <patrick.bellasi@arm.com> Reviewed-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 20 5月, 2018 1 次提交
-
-
由 Alexei Starovoitov 提交于
Detect code patterns where malicious 'speculative store bypass' can be used and sanitize such patterns. 39: (bf) r3 = r10 40: (07) r3 += -216 41: (79) r8 = *(u64 *)(r7 +0) // slow read 42: (7a) *(u64 *)(r10 -72) = 0 // verifier inserts this instruction 43: (7b) *(u64 *)(r8 +0) = r3 // this store becomes slow due to r8 44: (79) r1 = *(u64 *)(r6 +0) // cpu speculatively executes this load 45: (71) r2 = *(u8 *)(r1 +0) // speculatively arbitrary 'load byte' // is now sanitized Above code after x86 JIT becomes: e5: mov %rbp,%rdx e8: add $0xffffffffffffff28,%rdx ef: mov 0x0(%r13),%r14 f3: movq $0x0,-0x48(%rbp) fb: mov %rdx,0x0(%r14) ff: mov 0x0(%rbx),%rdi 103: movzbq 0x0(%rdi),%rsi Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 18 5月, 2018 5 次提交
-
-
由 Mathieu Malaterre 提交于
Since the grub_reclaim() function can be made static, make it so. Silences the following GCC warning (W=1): kernel/sched/deadline.c:1120:5: warning: no previous prototype for ‘grub_reclaim’ [-Wmissing-prototypes] Signed-off-by: NMathieu Malaterre <malat@debian.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180516200902.959-1-malat@debian.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mathieu Malaterre 提交于
In the following commit: 6b55c965 ("sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h") the print_cfs_rq() prototype was added to <kernel/sched/sched.h>, right next to the prototypes for print_cfs_stats(), print_rt_stats() and print_dl_stats(). Finish this previous commit and also move related prototypes for print_rt_rq() and print_dl_rq(). Remove existing extern declarations now that they not needed anymore. Silences the following GCC warning, triggered by W=1: kernel/sched/debug.c:573:6: warning: no previous prototype for ‘print_rt_rq’ [-Wmissing-prototypes] kernel/sched/debug.c:603:6: warning: no previous prototype for ‘print_dl_rq’ [-Wmissing-prototypes] Signed-off-by: NMathieu Malaterre <malat@debian.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180516195348.30426-1-malat@debian.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Daniel Borkmann 提交于
Recently during testing, I ran into the following panic: [ 207.892422] Internal error: Accessing user space memory outside uaccess.h routines: 96000004 [#1] SMP [ 207.901637] Modules linked in: binfmt_misc [...] [ 207.966530] CPU: 45 PID: 2256 Comm: test_verifier Tainted: G W 4.17.0-rc3+ #7 [ 207.974956] Hardware name: FOXCONN R2-1221R-A4/C2U4N_MB, BIOS G31FB18A 03/31/2017 [ 207.982428] pstate: 60400005 (nZCv daif +PAN -UAO) [ 207.987214] pc : bpf_skb_load_helper_8_no_cache+0x34/0xc0 [ 207.992603] lr : 0xffff000000bdb754 [ 207.996080] sp : ffff000013703ca0 [ 207.999384] x29: ffff000013703ca0 x28: 0000000000000001 [ 208.004688] x27: 0000000000000001 x26: 0000000000000000 [ 208.009992] x25: ffff000013703ce0 x24: ffff800fb4afcb00 [ 208.015295] x23: ffff00007d2f5038 x22: ffff00007d2f5000 [ 208.020599] x21: fffffffffeff2a6f x20: 000000000000000a [ 208.025903] x19: ffff000009578000 x18: 0000000000000a03 [ 208.031206] x17: 0000000000000000 x16: 0000000000000000 [ 208.036510] x15: 0000ffff9de83000 x14: 0000000000000000 [ 208.041813] x13: 0000000000000000 x12: 0000000000000000 [ 208.047116] x11: 0000000000000001 x10: ffff0000089e7f18 [ 208.052419] x9 : fffffffffeff2a6f x8 : 0000000000000000 [ 208.057723] x7 : 000000000000000a x6 : 00280c6160000000 [ 208.063026] x5 : 0000000000000018 x4 : 0000000000007db6 [ 208.068329] x3 : 000000000008647a x2 : 19868179b1484500 [ 208.073632] x1 : 0000000000000000 x0 : ffff000009578c08 [ 208.078938] Process test_verifier (pid: 2256, stack limit = 0x0000000049ca7974) [ 208.086235] Call trace: [ 208.088672] bpf_skb_load_helper_8_no_cache+0x34/0xc0 [ 208.093713] 0xffff000000bdb754 [ 208.096845] bpf_test_run+0x78/0xf8 [ 208.100324] bpf_prog_test_run_skb+0x148/0x230 [ 208.104758] sys_bpf+0x314/0x1198 [ 208.108064] el0_svc_naked+0x30/0x34 [ 208.111632] Code: 91302260 f9400001 f9001fa1 d2800001 (29500680) [ 208.117717] ---[ end trace 263cb8a59b5bf29f ]--- The program itself which caused this had a long jump over the whole instruction sequence where all of the inner instructions required heavy expansions into multiple BPF instructions. Additionally, I also had BPF hardening enabled which requires once more rewrites of all constant values in order to blind them. Each time we rewrite insns, bpf_adj_branches() would need to potentially adjust branch targets which cross the patchlet boundary to accommodate for the additional delta. Eventually that lead to the case where the target offset could not fit into insn->off's upper 0x7fff limit anymore where then offset wraps around becoming negative (in s16 universe), or vice versa depending on the jump direction. Therefore it becomes necessary to detect and reject any such occasions in a generic way for native eBPF and cBPF to eBPF migrations. For the latter we can simply check bounds in the bpf_convert_filter()'s BPF_EMIT_JMP helper macro and bail out once we surpass limits. The bpf_patch_insn_single() for native eBPF (and cBPF to eBPF in case of subsequent hardening) is a bit more complex in that we need to detect such truncations before hitting the bpf_prog_realloc(). Thus the latter is split into an extra pass to probe problematic offsets on the original program in order to fail early. With that in place and carefully tested I no longer hit the panic and the rewrites are rejected properly. The above example panic I've seen on bpf-next, though the issue itself is generic in that a guard against this issue in bpf seems more appropriate in this case. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
-
由 John Fastabend 提交于
In the sockmap design BPF programs (SK_SKB_STREAM_PARSER, SK_SKB_STREAM_VERDICT and SK_MSG_VERDICT) are attached to the sockmap map type and when a sock is added to the map the programs are used by the socket. However, sockmap updates from both userspace and BPF programs can happen concurrently with the attach and detach of these programs. To resolve this we use the bpf_prog_inc_not_zero and a READ_ONCE() primitive to ensure the program pointer is not refeched and possibly NULL'd before the refcnt increment. This happens inside a RCU critical section so although the pointer reference in the map object may be NULL (by a concurrent detach operation) the reference from READ_ONCE will not be free'd until after grace period. This ensures the object returned by READ_ONCE() is valid through the RCU criticl section and safe to use as long as we "know" it may be free'd shortly. Daniel spotted a case in the sock update API where instead of using the READ_ONCE() program reference we used the pointer from the original map, stab->bpf_{verdict|parse|txmsg}. The problem with this is the logic checks the object returned from the READ_ONCE() is not NULL and then tries to reference the object again but using the above map pointer, which may have already been NULL'd by a parallel detach operation. If this happened bpf_porg_inc_not_zero could dereference a NULL pointer. Fix this by using variable returned by READ_ONCE() that is checked for NULL. Fixes: 2f857d04 ("bpf: sockmap, remove STRPARSER map_flags and add multi-map support") Reported-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> -
由 John Fastabend 提交于
If the user were to only attach one of the parse or verdict programs then it is possible a subsequent sockmap update could incorrectly decrement the refcnt on the program. This happens because in the rollback logic, after an error, we have to decrement the program reference count when its been incremented. However, we only increment the program reference count if the user has both a verdict and a parse program. The reason for this is because, at least at the moment, both are required for any one to be meaningful. The problem fixed here is in the rollback path we decrement the program refcnt even if only one existing. But we never incremented the refcnt in the first place creating an imbalance. This patch fixes the error path to handle this case. Fixes: 2f857d04 ("bpf: sockmap, remove STRPARSER map_flags and add multi-map support") Reported-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
-
- 16 5月, 2018 3 次提交
-
-
由 Waiman Long 提交于
The filesystem freezing code needs to transfer ownership of a rwsem embedded in a percpu-rwsem from the task that does the freezing to another one that does the thawing by calling percpu_rwsem_release() after freezing and percpu_rwsem_acquire() before thawing. However, the new rwsem debug code runs afoul with this scheme by warning that the task that releases the rwsem isn't the one that acquires it, as reported by Amir Goldstein: DEBUG_LOCKS_WARN_ON(sem->owner != get_current()) WARNING: CPU: 1 PID: 1401 at /home/amir/build/src/linux/kernel/locking/rwsem.c:133 up_write+0x59/0x79 Call Trace: percpu_up_write+0x1f/0x28 thaw_super_locked+0xdf/0x120 do_vfs_ioctl+0x270/0x5f1 ksys_ioctl+0x52/0x71 __x64_sys_ioctl+0x16/0x19 do_syscall_64+0x5d/0x167 entry_SYSCALL_64_after_hwframe+0x49/0xbe To work properly with the rwsem debug code, we need to annotate that the rwsem ownership is unknown during the tranfer period until a brave soul comes forward to acquire the ownership. During that period, optimistic spinning will be disabled. Reported-by: NAmir Goldstein <amir73il@gmail.com> Tested-by: NAmir Goldstein <amir73il@gmail.com> Signed-off-by: NWaiman Long <longman@redhat.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-3-git-send-email-longman@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Waiman Long 提交于
There are use cases where a rwsem can be acquired by one task, but released by another task. In thess cases, optimistic spinning may need to be disabled. One example will be the filesystem freeze/thaw code where the task that freezes the filesystem will acquire a write lock on a rwsem and then un-owns it before returning to userspace. Later on, another task will come along, acquire the ownership, thaw the filesystem and release the rwsem. Bit 0 of the owner field was used to designate that it is a reader owned rwsem. It is now repurposed to mean that the owner of the rwsem is not known. If only bit 0 is set, the rwsem is reader owned. If bit 0 and other bits are set, it is writer owned with an unknown owner. One such value for the latter case is (-1L). So we can set owner to 1 for reader-owned, -1 for writer-owned. The owner is unknown in both cases. To handle transfer of rwsem ownership, the higher level code should set the owner field to -1 to indicate a write-locked rwsem with unknown owner. Optimistic spinning will be disabled in this case. Once the higher level code figures who the new owner is, it can then set the owner field accordingly. Tested-by: NAmir Goldstein <amir73il@gmail.com> Signed-off-by: NWaiman Long <longman@redhat.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-2-git-send-email-longman@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dexuan Cui 提交于
for_each_cpu() unintuitively reports CPU0 as set independent of the actual cpumask content on UP kernels. This causes an unexpected PIT interrupt storm on a UP kernel running in an SMP virtual machine on Hyper-V, and as a result, the virtual machine can suffer from a strange random delay of 1~20 minutes during boot-up, and sometimes it can hang forever. Protect if by checking whether the cpumask is empty before entering the for_each_cpu() loop. [ tglx: Use !IS_ENABLED(CONFIG_SMP) instead of #ifdeffery ] Signed-off-by: NDexuan Cui <decui@microsoft.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Josh Poulson <jopoulso@microsoft.com> Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: stable@vger.kernel.org Cc: Rakib Mullick <rakib.mullick@gmail.com> Cc: Jork Loeser <Jork.Loeser@microsoft.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: KY Srinivasan <kys@microsoft.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Link: https://lkml.kernel.org/r/KL1P15301MB000678289FE55BA365B3279ABF990@KL1P15301MB0006.APCP153.PROD.OUTLOOK.COM Link: https://lkml.kernel.org/r/KL1P15301MB0006FA63BC22BEB64902EAA0BF930@KL1P15301MB0006.APCP153.PROD.OUTLOOK.COM
-
- 15 5月, 2018 2 次提交
-
-
由 Viresh Kumar 提交于
The schedutil driver sets sg_policy->next_freq to UINT_MAX on certain occasions to discard the cached value of next freq: - In sugov_start(), when the schedutil governor is started for a group of CPUs. - And whenever we need to force a freq update before rate-limit duration, which happens when: - there is an update in cpufreq policy limits. - Or when the utilization of DL scheduling class increases. In return, get_next_freq() doesn't return a cached next_freq value but recalculates the next frequency instead. But having special meaning for a particular value of frequency makes the code less readable and error prone. We recently fixed a bug where the UINT_MAX value was considered as valid frequency in sugov_update_single(). All we need is a flag which can be used to discard the value of sg_policy->next_freq and we already have need_freq_update for that. Lets reuse it instead of setting next_freq to UINT_MAX. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Dietmar Eggemann 提交于
This reverts commit e2cabe48. Lifting the restriction that the sugov kthread is bound to the policy->related_cpus for a system with a slow switching cpufreq driver, which is able to perform DVFS from any cpu (e.g. cpufreq-dt), is not only not beneficial it also harms Enery-Aware Scheduling (EAS) on systems with asymmetric cpu capacities (e.g. Arm big.LITTLE). The sugov kthread which does the update for the little cpus could potentially run on a big cpu. It could prevent that the big cluster goes into deeper idle states although all the tasks are running on the little cluster. Example: hikey960 w/ 4.16.0-rc6-+ Arm big.LITTLE with per-cluster DVFS root@h960:~# cat /proc/cpuinfo | grep "^CPU part" CPU part : 0xd03 (Cortex-A53, little cpu) CPU part : 0xd03 CPU part : 0xd03 CPU part : 0xd03 CPU part : 0xd09 (Cortex-A73, big cpu) CPU part : 0xd09 CPU part : 0xd09 CPU part : 0xd09 root@h960:/sys/devices/system/cpu/cpufreq# ls policy0 policy4 schedutil root@h960:/sys/devices/system/cpu/cpufreq# cat policy*/related_cpus 0 1 2 3 4 5 6 7 (1) w/o the revert: root@h960:~# ps -eo pid,class,rtprio,pri,psr,comm | awk 'NR == 1 || /sugov/' PID CLS RTPRIO PRI PSR COMMAND 1489 #6 0 140 1 sugov:0 1490 #6 0 140 0 sugov:4 The sugov kthread sugov:4 responsible for policy4 runs on cpu0. (In this case both sugov kthreads run on little cpus). cross policy (cluster) remote callback example: ... migration/1-14 [001] enqueue_task_fair: this_cpu=1 cpu_of(rq)=5 migration/1-14 [001] sugov_update_shared: this_cpu=1 sg_cpu->cpu=5 sg_cpu->sg_policy->policy->related_cpus=4-7 sugov:4-1490 [000] sugov_work: this_cpu=0 sg_cpu->sg_policy->policy->related_cpus=4-7 ... The remote callback (this_cpu=1, target_cpu=5) is executed on cpu=0. (2) w/ the revert: root@h960:~# ps -eo pid,class,rtprio,pri,psr,comm | awk 'NR == 1 || /sugov/' PID CLS RTPRIO PRI PSR COMMAND 1491 #6 0 140 2 sugov:0 1492 #6 0 140 4 sugov:4 The sugov kthread sugov:4 responsible for policy4 runs on cpu4. cross policy (cluster) remote callback example: ... migration/1-14 [001] enqueue_task_fair: this_cpu=1 cpu_of(rq)=7 migration/1-14 [001] sugov_update_shared: this_cpu=1 sg_cpu->cpu=7 sg_cpu->sg_policy->policy->related_cpus=4-7 sugov:4-1492 [004] sugov_work: this_cpu=4 sg_cpu->sg_policy->policy->related_cpus=4-7 ... The remote callback (this_cpu=1, target_cpu=7) is executed on cpu=4. Now the sugov kthread executes again on the policy (cluster) for which the Operating Performance Point (OPP) should be changed. It avoids the problem that an otherwise idle policy (cluster) is running schedutil (the sugov kthread) for another one. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 5月, 2018 2 次提交
-
-
由 Mel Gorman 提交于
This reverts commit 7347fc87. Srikar Dronamra pointed out that while the commit in question did show a performance improvement on ppc64, it did so at the cost of disabling active CPU migration by automatic NUMA balancing which was not the intent. The issue was that a serious flaw in the logic failed to ever active balance if SD_WAKE_AFFINE was disabled on scheduler domains. Even when it's enabled, the logic is still bizarre and against the original intent. Investigation showed that fixing the patch in either the way he suggested, using the correct comparison for jiffies values or introducing a new numa_migrate_deferred variable in task_struct all perform similarly to a revert with a mix of gains and losses depending on the workload, machine and socket count. The original intent of the commit was to handle a problem whereby wake_affine, idle balancing and automatic NUMA balancing disagree on the appropriate placement for a task. This was particularly true for cases where a single task was a massive waker of tasks but where wake_wide logic did not apply. This was particularly noticeable when a futex (a barrier) woke all worker threads and tried pulling the wakees to the waker nodes. In that specific case, it could be handled by tuning MPI or openMP appropriately, but the behavior is not illogical and was worth attempting to fix. However, the approach was wrong. Given that we're at rc4 and a fix is not obvious, it's better to play safe, revert this commit and retry later. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: efault@gmx.de Cc: ggherdovich@suse.cz Cc: hpa@zytor.com Cc: matt@codeblueprint.co.uk Cc: mpe@ellerman.id.au Link: http://lkml.kernel.org/r/20180509163115.6fnnyeg4vdm2ct4v@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jeffrey Hugo 提交于
load_module() creates W+X mappings via __vmalloc_node_range() (from layout_and_allocate()->move_module()->module_alloc()) by using PAGE_KERNEL_EXEC. These mappings are later cleaned up via "call_rcu_sched(&freeinit->rcu, do_free_init)" from do_init_module(). This is a problem because call_rcu_sched() queues work, which can be run after debug_checkwx() is run, resulting in a race condition. If hit, the race results in a nasty splat about insecure W+X mappings, which results in a poor user experience as these are not the mappings that debug_checkwx() is intended to catch. This issue is observed on multiple arm64 platforms, and has been artificially triggered on an x86 platform. Address the race by flushing the queued work before running the arch-defined mark_rodata_ro() which then calls debug_checkwx(). Link: http://lkml.kernel.org/r/1525103946-29526-1-git-send-email-jhugo@codeaurora.org Fixes: e1a58320 ("x86/mm: Warn on W^X mappings") Signed-off-by: NJeffrey Hugo <jhugo@codeaurora.org> Reported-by: NTimur Tabi <timur@codeaurora.org> Reported-by: NJan Glauber <jan.glauber@caviumnetworks.com> Acked-by: NKees Cook <keescook@chromium.org> Acked-by: NIngo Molnar <mingo@kernel.org> Acked-by: NWill Deacon <will.deacon@arm.com> Acked-by: NLaura Abbott <labbott@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 5月, 2018 2 次提交
-
-
由 Steven Rostedt (VMware) 提交于
The regex match function regex_match_front() in the tracing filter logic, was fixed to test just the pattern length from testing the entire test string. That is, it went from strncmp(str, r->pattern, len) to strcmp(str, r->pattern, r->len). The issue is that str is not guaranteed to be nul terminated, and if r->len is greater than the length of str, it can access more memory than is allocated. The solution is to add a simple test if (len < r->len) return 0. Cc: stable@vger.kernel.org Fixes: 285caad4 ("tracing/filters: Fix MATCH_FRONT_ONLY filter matching") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Jann Horn 提交于
Commit 3a4d44b6 ("ntp: Move adjtimex related compat syscalls to native counterparts") removed the memset() in compat_get_timex(). Since then, the compat adjtimex syscall can invoke do_adjtimex() with an uninitialized ->tai. If do_adjtimex() doesn't write to ->tai (e.g. because the arguments are invalid), compat_put_timex() then copies the uninitialized ->tai field to userspace. Fix it by adding the memset() back. Fixes: 3a4d44b6 ("ntp: Move adjtimex related compat syscalls to native counterparts") Signed-off-by: NJann Horn <jannh@google.com> Acked-by: NKees Cook <keescook@chromium.org> Acked-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 5月, 2018 1 次提交
-
-
由 Doug Berger 提交于
When wakelock support was added, the wakeup_source_add() function was updated to set the last_time value of the wakeup source. This has the unintended side effect of producing confusing output from pm_print_active_wakeup_sources() when a wakeup source is added prior to a sleep that is blocked by a different wakeup source. The function pm_print_active_wakeup_sources() will search for the most recently active wakeup source when no active source is found. If a wakeup source is added after a different wakeup source blocks the system from going to sleep it may have a later last_time value than the blocking source and be output as the last active wakeup source even if it has never actually been active. It looks to me like the change to wakeup_source_add() was made to prevent the wakelock garbage collection from accidentally dropping a wakelock during the narrow window between adding the wakelock to the wakelock list in wakelock_lookup_add() and the activation of the wakeup source in pm_wake_lock(). This commit changes the behavior so that only the last_time of the wakeup source used by a wakelock is initialized prior to adding it to the wakeup source list. This preserves the meaning of the last_time value as the last time the wakeup source was active and allows a wakeup source that has never been active to have a last_time value of 0. Fixes: b86ff982 (PM / Sleep: Add user space interface for manipulating wakeup sources, v3) Signed-off-by: NDoug Berger <opendmb@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 5月, 2018 2 次提交
-
-
由 Rafael J. Wysocki 提交于
If the next_freq field of struct sugov_policy is set to UINT_MAX, it shouldn't be used for updating the CPU frequency (this is a special "invalid" value), but after commit b7eaf1aa (cpufreq: schedutil: Avoid reducing frequency of busy CPUs prematurely) it may be passed as the new frequency to sugov_update_commit() in sugov_update_single(). Fix that by adding an extra check for the special UINT_MAX value of next_freq to sugov_update_single(). Fixes: b7eaf1aa (cpufreq: schedutil: Avoid reducing frequency of busy CPUs prematurely) Reported-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: 4.12+ <stable@vger.kernel.org> # 4.12+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Juri Lelli 提交于
After commit 794a56eb (sched/cpufreq: Change the worker kthread to SCHED_DEADLINE) schedutil kthreads are "ignored" for a clock frequency selection point of view, so the potential corner case for RT tasks is not possible at all now. Remove the stale comment mentioning it. Signed-off-by: NJuri Lelli <juri.lelli@redhat.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 5月, 2018 6 次提交
-
-
由 Peter Zijlstra 提交于
> kernel/events/ring_buffer.c:871 perf_mmap_to_page() warn: potential spectre issue 'rb->aux_pages' Userspace controls @pgoff through the fault address. Sanitize the array index before doing the array dereference. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
> kernel/sched/autogroup.c:230 proc_sched_autogroup_set_nice() warn: potential spectre issue 'sched_prio_to_weight' Userspace controls @nice, sanitize the array index. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
> kernel/sched/core.c:6921 cpu_weight_nice_write_s64() warn: potential spectre issue 'sched_prio_to_weight' Userspace controls @nice, so sanitize the value before using it to index an array. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The migitation control is simpler to implement in architecture code as it avoids the extra function call to check the mode. Aside of that having an explicit seccomp enabled mode in the architecture mitigations would require even more workarounds. Move it into architecture code and provide a weak function in the seccomp code. Remove the 'which' argument as this allows the architecture to decide which mitigations are relevant for seccomp. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> -
由 Kees Cook 提交于
If a seccomp user is not interested in Speculative Store Bypass mitigation by default, it can set the new SECCOMP_FILTER_FLAG_SPEC_ALLOW flag when adding filters. Signed-off-by: NKees Cook <keescook@chromium.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Thomas Gleixner 提交于
Use PR_SPEC_FORCE_DISABLE in seccomp() because seccomp does not allow to widen restrictions. Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-