- 19 6月, 2009 1 次提交
-
-
由 Oleg Nesterov 提交于
allow_signal() checks ->mm == NULL. Not sure why. Perhaps to make sure current is the kernel thread. But this helper must not be used unless we are the kernel thread, kill this check. Also, document the fact that the CLONE_SIGHAND kthread must not use allow_signal(), unless the caller really wants to change the parent's ->sighand->action as well. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 5月, 2009 1 次提交
-
-
由 Paul Mackerras 提交于
This replaces the struct perf_counter_context in the task_struct with a pointer to a dynamically allocated perf_counter_context struct. The main reason for doing is this is to allow us to transfer a perf_counter_context from one task to another when we do lazy PMU switching in a later patch. This has a few side-benefits: the task_struct becomes a little smaller, we save some memory because only tasks that have perf_counters attached get a perf_counter_context allocated for them, and we can remove the inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't end up recompiling nearly everything whenever perf_counter.h changes. The perf_counter_context structures are reference-counted and freed when the last reference is dropped. A context can have references from its task and the counters on its task. Counters can outlive the task so it is possible that a context will be freed well after its task has exited. Contexts are allocated on fork if the parent had a context, or otherwise the first time that a per-task counter is created on a task. In the latter case, we set the context pointer in the task struct locklessly using an atomic compare-and-exchange operation in case we raced with some other task in creating a context for the subject task. This also removes the task pointer from the perf_counter struct. The task pointer was not used anywhere and would make it harder to move a context from one task to another. Anything that needed to know which task a counter was attached to was already using counter->ctx->task. The __perf_counter_init_context function moves up in perf_counter.c so that it can be called from find_get_context, and now initializes the refcount, but is otherwise unchanged. We were potentially calling list_del_counter twice: once from __perf_counter_exit_task when the task exits and once from __perf_counter_remove_from_context when the counter's fd gets closed. This adds a check in list_del_counter so it doesn't do anything if the counter has already been removed from the lists. Since perf_counter_task_sched_in doesn't do anything if the task doesn't have a context, and leaves cpuctx->task_ctx = NULL, this adds code to __perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in the case where the current task adds the first counter to itself and thus creates a context for itself. This also adds similar code to __perf_counter_enable to handle a similar situation which can arise when the counters have been disabled using prctl; that also leaves cpuctx->task_ctx = NULL. [ Impact: refactor counter context management to prepare for new feature ] Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 5月, 2009 1 次提交
-
-
由 Ingo Molnar 提交于
Fix counter lifetime bugs which explain the crashes reported by Marcelo Tosatti and Arnaldo Carvalho de Melo. The new rule is: flushing + freeing is only done for a task's own counters, never for other tasks. [ Impact: fix crashes/lockups with inherited counters ] Reported-by: NArnaldo Carvalho de Melo <acme@redhat.com> Reported-by: NMarcelo Tosatti <mtosatti@redhat.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 5月, 2009 2 次提交
-
-
由 Ingo Molnar 提交于
Flushing counters in __exit_signal() with irqs disabled is not a good idea as perf_counter_exit_task() acquires mutexes. So flush it before acquiring the tasklist lock. (Note, we still need a fix for when the PID has been unhashed.) [ Impact: fix crash with inherited counters ] Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Srivatsa Vaddagiri reported that a Java workload triggers this warning in kernel/exit.c: WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list)); Add the inherited counter propagation on self-detach, this could cause counter leaks and incomplete stats in threaded code like the below: #include <pthread.h> #include <unistd.h> void *thread(void *arg) { sleep(5); return NULL; } void main(void) { pthread_t thr; pthread_create(&thr, NULL, thread, NULL); } Reported-by: NSrivatsa Vaddagiri <vatsa@in.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 5月, 2009 1 次提交
-
-
由 Oleg Nesterov 提交于
I was never able to understand what should we actually do when security_task_wait() fails, but the current code doesn't look right. If ->task_wait() returns the error, we update *notask_error correctly. But then we either reap the child (despite the fact this was forbidden) or clear *notask_error (and hide the securiy policy problems). This patch assumes that "stolen by ptrace" doesn't matter. If selinux denies the child we should ignore it but make sure we report -EACCESS instead of -ECHLD if there are no other eligible children. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-
- 15 4月, 2009 2 次提交
-
-
由 Steven Rostedt 提交于
Impact: clean up Create a sub directory in include/trace called events to keep the trace point headers in their own separate directory. Only headers that declare trace points should be defined in this directory. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 07 4月, 2009 1 次提交
-
-
由 Oleg Nesterov 提交于
The CAP_KILL check in exit_notify() looks just wrong, kill it. Whatever logic we have to reset ->exit_signal, the malicious user can bypass it if it execs the setuid application before exiting. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NSerge Hallyn <serue@us.ibm.com> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2009 10 次提交
-
-
由 Oleg Nesterov 提交于
We are wasting 2 words in signal_struct without any reason to implement task_pgrp_nr() and task_session_nr(). task_session_nr() has no callers since 2e2ba22e, we can remove it. task_pgrp_nr() is still (I believe wrongly) used in fs/autofsX and fs/coda. This patch reimplements task_pgrp_nr() via task_pgrp_nr_ns(), and kills __pgrp/__session and the related helpers. The change in drivers/char/tty_io.c is cosmetic, but hopefully makes sense anyway. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: Alan Cox <number6@the-village.bc.nu> [tty parts] Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Serge Hallyn <serue@us.ibm.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
sys_wait4() does get_pid(task_pgrp(current)), this is not safe. We can add rcu lock/unlock around, but we already have get_task_pid() which can be improved to handle the special pids in more reliable manner. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Louis Rilling <Louis.Rilling@kerlabs.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
By discussion with Roland. - Use ->sibling instead of ->ptrace_entry to chain the need to be release_task'd childs. Nobody else can use ->sibling, this task is EXIT_DEAD and nobody can find it on its own list. - rename ptrace_dead to dead_childs. - Now that we don't have the "parallel" untrace code, change back reparent_thread() to return void, pass dead_childs as an argument. Actually, I don't understand why do we notify /sbin/init when we reparent a zombie, probably it is better to reap it unconditionally. [akpm@linux-foundation.org: s/childs/children/] Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Metzger, Markus T" <markus.t.metzger@intel.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
By discussion with Roland. - Rename ptrace_exit() to exit_ptrace(), and change it to do all the necessary work with ->ptraced list by its own. - Move this code from exit.c to ptrace.c - Update the comment in ptrace_detach() to explain the rechecking of the child->ptrace. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Metzger, Markus T" <markus.t.metzger@intel.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
If /sbin/init ignores SIGCHLD and we re-parent a zombie, it is leaked. reparent_thread() does do_notify_parent() which sets ->exit_signal = -1 in this case. This means that nobody except us can reap it, the detached task is not visible to do_wait(). Change reparent_thread() to return a boolean (like __pthread_detach) to indicate that the thread is dead and must be released. Also change forget_original_parent() to add the child to ptrace_dead list in this case. The naming becomes insane, the next patch does the cleanup. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
reparent_thread() uses ptrace_reparented() to check whether this thread is ptraced, in that case we should not notify the new parent. But ptrace_reparented() is not exactly correct when the reparented thread is traced by /sbin/init, because forget_original_parent() has already changed ->real_parent. Currently, the only problem is the false notification. But with the next patch the kernel crash in this (yes, pathological) case. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
If task_detached(p) == T, then either a) p is not the main thread, we will find the group leader on the ->children list. or b) p is the group leader but its ->exit_state = EXIT_DEAD. This can only happen when the last sub-thread has died, but in that case that thread has already called kill_orphaned_pgrp() from exit_notify(). In both cases kill_orphaned_pgrp() looks bogus. Move the task_detached() check up and simplify the code, this is also right from the "common sense" pov: we should do nothing with the detached childs, except move them to the new parent's ->children list. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
No functional changes, preparation for the next patch. Move the "should we release this child" logic into the separate handler, __ptrace_detach(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
ignoring_children() takes parent->sighand->siglock and checks k_sigaction[SIGCHLD] atomically. But this buys nothing, we can't get the "really" wrong result even if we race with sigaction(SIGCHLD). If we read the "stale" sa_handler/sa_flags we can pretend it was changed right after the check. Remove spin_lock(->siglock), and kill "int ign" which caches the result of ignoring_children() which becomes rather trivial. Perhaps it makes sense to export this helper, do_notify_parent() can use it too. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
do_wait(WSTOPPED) assumes that p->state must be == TASK_STOPPED, this is not true if the leader is already dead. Check SIGNAL_STOP_STOPPED instead and use signal->group_exit_code. Trivial test-case: void *tfunc(void *arg) { pause(); return NULL; } int main(void) { pthread_t thr; pthread_create(&thr, NULL, tfunc, NULL); pthread_exit(NULL); return 0; } It doesn't react to ^Z (and then to ^C or ^\). The task is stopped, but bash can't see this. The bug is very old, and it was reported multiple times. This patch was sent more than a year ago (http://marc.info/?t=119713920000003) but it was ignored. This change also fixes other oddities (but not all) in this area. For example, before this patch: $ sleep 100 ^Z [1]+ Stopped sleep 100 $ strace -p `pidof sleep` Process 11442 attached - interrupt to quit strace hangs in do_wait(), because ->exit_code was already consumed by bash. After this patch, strace happily proceeds: --- SIGTSTP (Stopped) @ 0 (0) --- restart_syscall(<... resuming interrupted call ...> To me, this looks much more "natural" and correct. Another example. Let's suppose we have the main thread M and sub-thread T, the process is stopped, and its parent did wait(WSTOPPED). Now we can ptrace T but not M. This looks at least strange to me. Imho, do_wait() should not confuse the per-thread ptrace stops with the per-process job control stops. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Kaz Kylheku <kkylheku@gmail.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Roland McGrath <roland@redhat.com> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 4月, 2009 2 次提交
-
-
由 Al Viro 提交于
Don't pull it in sched.h; very few files actually need it and those can include directly. sched.h itself only needs forward declaration of struct fs_struct; Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Pure code move; two new helper functions for nfsd and daemonize (unshare_fs_struct() and daemonize_fs_struct() resp.; for now - the same code as used to be in callers). unshare_fs_struct() exported (for nfsd, as copy_fs_struct()/exit_fs() used to be), copy_fs_struct() and exit_fs() don't need exports anymore. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 24 3月, 2009 1 次提交
-
-
由 Thomas Gleixner 提交于
Add support for threaded interrupt handlers: A device driver can request that its main interrupt handler runs in a thread. To achive this the device driver requests the interrupt with request_threaded_irq() and provides additionally to the handler a thread function. The handler function is called in hard interrupt context and needs to check whether the interrupt originated from the device. If the interrupt originated from the device then the handler can either return IRQ_HANDLED or IRQ_WAKE_THREAD. IRQ_HANDLED is returned when no further action is required. IRQ_WAKE_THREAD causes the genirq code to invoke the threaded (main) handler. When IRQ_WAKE_THREAD is returned handler must have disabled the interrupt on the device level. This is mandatory for shared interrupt handlers, but we need to do it as well for obscure x86 hardware where disabling an interrupt on the IO_APIC level redirects the interrupt to the legacy PIC interrupt lines. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NIngo Molnar <mingo@elte.hu>
-
- 05 2月, 2009 1 次提交
-
-
由 Peter Zijlstra 提交于
We're going to split the process wide cpu accounting into two parts: - clocks; which can take all the time they want since they run from user context. - timers; which need constant time tracing but can affort the overhead because they're default off -- and rare. The clock readout will go back to a full sum of the thread group, for this we need to re-add the exit stats that were removed in the initial itimer rework (f06febc9: timers: fix itimer/many thread hang). Furthermore, since that full sum can be rather slow for large thread groups and we have the complete dead task stats, revert the do_notify_parent time computation. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 1月, 2009 3 次提交
-
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Convert all system calls to return a long. This should be a NOP since all converted types should have the same size anyway. With the exception of sys_exit_group which returned void. But that doesn't matter since the system call doesn't return. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 07 1月, 2009 2 次提交
-
-
由 Oleg Nesterov 提交于
xacct_add_tsk() relies on do_exit()->update_hiwater_xxx() and uses mm->hiwater_xxx directly, this leads to 2 problems: - taskstats_user_cmd() can call fill_pid()->xacct_add_tsk() at any moment before the task exits, so we should check the current values of rss/vm anyway. - do_exit()->update_hiwater_xxx() calls are racy. An exiting thread can be preempted right before mm->hiwater_xxx = new_val, and another thread can use A_LOT of memory and exit in between. When the first thread resumes it can be the last thread in the thread group, in that case we report the wrong hiwater_xxx values which do not take A_LOT into account. Introduce get_mm_hiwater_rss() and get_mm_hiwater_vm() helpers and change xacct_add_tsk() to use them. The first helper will also be used by rusage->ru_maxrss accounting. Kill do_exit()->update_hiwater_xxx() calls. Unless we are going to decrease rss/vm there is no point to update mm->hiwater_xxx, and nobody can look at this mm_struct when exit_mmap() actually unmaps the memory. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NHugh Dickins <hugh@veritas.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
cgroup_mm_owner_callbacks() was brought in to support the memrlimit controller, but sneaked into mainline ahead of it. That controller has now been shelved, and the mm_owner_changed() args were inadequate for it anyway (they needed an mm pointer instead of a task pointer). Remove the dead code, and restore mm_update_next_owner() locking to how it was before: taking mmap_sem there does nothing for memcontrol.c, now the only user of mm->owner. Signed-off-by: NHugh Dickins <hugh@veritas.com> Cc: Paul Menage <menage@google.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 12月, 2008 1 次提交
-
-
由 Nikanth Karthikesan 提交于
When taking recursive faults in do_exit, if the io_context is not null, exit_io_context() is being called. But it might decrement the refcount more than once. It is better to leave this task alone. Signed-off-by: NNikanth Karthikesan <knikanth@suse.de> Signed-off-by: NJens Axboe <jens.axboe@oracle.com>
-
- 23 12月, 2008 2 次提交
-
-
由 Ingo Molnar 提交于
Change counter inheritance from a 'push' to a 'pull' model: instead of child tasks pushing their final counts to the parent, reuse the wait4 infrastructure to pull counters as child tasks are exit-processed, much like how cutime/cstime is collected. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Ingo Molnar 提交于
Impact: fix per task clock counter precision Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 12月, 2008 1 次提交
-
-
由 Ingo Molnar 提交于
Impact: implement new performance feature Counter inheritance can be used to run performance counters in a workload, transparently - and pipe back the counter results to the parent counter. Inheritance for performance counters works the following way: when creating a counter it can be marked with the .inherit=1 flag. Such counters are then 'inherited' by all child tasks (be they fork()-ed or clone()-ed). These counters get inherited through exec() boundaries as well (except through setuid boundaries). The counter values get added back to the parent counter(s) when the child task(s) exit - much like stime/utime statistics are gathered. So inherited counters are ideal to gather summary statistics about an application's behavior via shell commands, without having to modify that application. The timec.c command utilizes counter inheritance: http://redhat.com/~mingo/perfcounters/timec.c Sample output: $ ./timec -e 1 -e 3 -e 5 ls -lR /usr/include/ >/dev/null Performance counter stats for 'ls': 163516953 instructions 2295 cache-misses 2855182 branch-misses Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 11月, 2008 1 次提交
-
-
由 Frederic Weisbecker 提交于
Impact: avoid losing some traces when a task is freed do_exit() is not the last function called when a task finishes. There are still some functions which are to be called such as ree_task(). So we delay the freeing of the return stack to the last moment. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 11月, 2008 2 次提交
-
-
由 Ingo Molnar 提交于
Impact: cleanup Eliminate #ifdefs in core code by using empty inline functions. Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Frederic Weisbecker 提交于
Impact: use deeper function tracing depth safely Some tests showed that function return tracing needed a more deeper depth of function calls. But it could be unsafe to store these return addresses to the stack. So these arrays will now be allocated dynamically into task_struct of current only when the tracer is activated. Typical scheme when tracer is activated: - allocate a return stack for each task in global list. - fork: allocate the return stack for the newly created task - exit: free return stack of current - idle init: same as fork I chose a default depth of 50. I don't have overruns anymore. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 11月, 2008 1 次提交
-
-
由 Oleg Nesterov 提交于
Impact: relax the locking of cpu-time accounting calls ->siglock buys nothing for thread_group_cputime() in do_sys_times() and wait_task_zombie() (which btw takes the unrelated parent's ->siglock). Actually I think do_sys_times() doesn't need ->siglock at all. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 16 11月, 2008 2 次提交
-
-
由 Mathieu Desnoyers 提交于
Impact: API *CHANGE*. Must update all tracepoint users. Add DEFINE_TRACE() to tracepoints to let them declare the tracepoint structure in a single spot for all the kernel. It helps reducing memory consumption, especially when declaring a lot of tracepoints, e.g. for kmalloc tracing. *API CHANGE WARNING*: now, DECLARE_TRACE() must be used in headers for tracepoint declarations rather than DEFINE_TRACE(). This is the sane way to do it. The name previously used was misleading. Updates scheduler instrumentation to follow this API change. Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Linus Torvalds 提交于
We don't want to get rid of the futexes just at exit() time, we want to drop them when doing an execve() too, since that gets rid of the previous VM image too. Doing it at mm_release() time means that we automatically always do it when we disassociate a VM map from the task. Reported-by: pageexec@freemail.hu Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Brad Spengler <spender@grsecurity.net> Cc: Alex Efros <powerman@powerman.name> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 11月, 2008 2 次提交
-
-
由 David Howells 提交于
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
由 David Howells 提交于
Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJames Morris <jmorris@namei.org> Acked-by: NSerge Hallyn <serue@us.ibm.com> Signed-off-by: NJames Morris <jmorris@namei.org>
-