1. 21 3月, 2016 2 次提交
    • H
      perf/x86/amd/power: Add AMD accumulated power reporting mechanism · c7ab62bf
      Huang Rui 提交于
      Introduce an AMD accumlated power reporting mechanism for the Family
      15h, Model 60h processor that can be used to calculate the average
      power consumed by a processor during a measurement interval. The
      feature support is indicated by CPUID Fn8000_0007_EDX[12].
      
      This feature will be implemented both in hwmon and perf. The current
      design provides one event to report per package/processor power
      consumption by counting each compute unit power value.
      
      Here the gory details of how the computation is done:
      
      * Tsample: compute unit power accumulator sample period
      * Tref: the PTSC counter period (PTSC: performance timestamp counter)
      * N: the ratio of compute unit power accumulator sample period to the
        PTSC period
      
      * Jmax: max compute unit accumulated power which is indicated by
        MSR_C001007b[MaxCpuSwPwrAcc]
      
      * Jx/Jy: compute unit accumulated power which is indicated by
        MSR_C001007a[CpuSwPwrAcc]
      
      * Tx/Ty: the value of performance timestamp counter which is indicated
        by CU_PTSC MSR_C0010280[PTSC]
      * PwrCPUave: CPU average power
      
      i. Determine the ratio of Tsample to Tref by executing CPUID Fn8000_0007.
      	N = value of CPUID Fn8000_0007_ECX[CpuPwrSampleTimeRatio[15:0]].
      
      ii. Read the full range of the cumulative energy value from the new
          MSR MaxCpuSwPwrAcc.
      	Jmax = value returned.
      
      iii. At time x, software reads CpuSwPwrAcc and samples the PTSC.
      	Jx = value read from CpuSwPwrAcc and Tx = value read from PTSC.
      
      iv. At time y, software reads CpuSwPwrAcc and samples the PTSC.
      	Jy = value read from CpuSwPwrAcc and Ty = value read from PTSC.
      
      v. Calculate the average power consumption for a compute unit over
      time period (y-x). Unit of result is uWatt:
      
      	if (Jy < Jx) // Rollover has occurred
      		Jdelta = (Jy + Jmax) - Jx
      	else
      		Jdelta = Jy - Jx
      	PwrCPUave = N * Jdelta * 1000 / (Ty - Tx)
      
      Simple example:
      
        root@hr-zp:/home/ray/tip# ./tools/perf/perf stat -a -e 'power/power-pkg/' make -j4
          CHK     include/config/kernel.release
          CHK     include/generated/uapi/linux/version.h
          CHK     include/generated/utsrelease.h
          CHK     include/generated/timeconst.h
          CHK     include/generated/bounds.h
          CHK     include/generated/asm-offsets.h
          CALL    scripts/checksyscalls.sh
          CHK     include/generated/compile.h
          SKIPPED include/generated/compile.h
          Building modules, stage 2.
        Kernel: arch/x86/boot/bzImage is ready  (#40)
          MODPOST 4225 modules
      
         Performance counter stats for 'system wide':
      
                    183.44 mWatts power/power-pkg/
      
             341.837270111 seconds time elapsed
      
        root@hr-zp:/home/ray/tip# ./tools/perf/perf stat -a -e 'power/power-pkg/' sleep 10
      
         Performance counter stats for 'system wide':
      
                      0.18 mWatts power/power-pkg/
      
              10.012551815 seconds time elapsed
      Suggested-by: NPeter Zijlstra <peterz@infradead.org>
      Suggested-by: NIngo Molnar <mingo@kernel.org>
      Suggested-by: NBorislav Petkov <bp@suse.de>
      Signed-off-by: NHuang Rui <ray.huang@amd.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: David Ahern <dsahern@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kan Liang <kan.liang@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Vince Weaver <vincent.weaver@maine.edu>
      Cc: jacob.w.shin@gmail.com
      Link: http://lkml.kernel.org/r/1457502306-2559-1-git-send-email-ray.huang@amd.com
      [ Fixed the modular build. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      c7ab62bf
    • V
      perf/x86/cqm: Fix CQM handling of grouping events into a cache_group · a223c1c7
      Vikas Shivappa 提交于
      Currently CQM (cache quality of service monitoring) is grouping all
      events belonging to same PID to use one RMID. However its not counting
      all of these different events. Hence we end up with a count of zero
      for all events other than the group leader.
      
      The patch tries to address the issue by keeping a flag in the
      perf_event.hw which has other CQM related fields. The field is updated
      at event creation and during grouping.
      Signed-off-by: NVikas Shivappa <vikas.shivappa@linux.intel.com>
      [peterz: Changed hw_perf_event::is_group_event to an int]
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NTony Luck <tony.luck@intel.com>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: David Ahern <dsahern@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Matt Fleming <matt@codeblueprint.co.uk>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Vince Weaver <vincent.weaver@maine.edu>
      Cc: fenghua.yu@intel.com
      Cc: h.peter.anvin@intel.com
      Cc: ravi.v.shankar@intel.com
      Cc: vikas.shivappa@intel.com
      Link: http://lkml.kernel.org/r/1457652732-4499-2-git-send-email-vikas.shivappa@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      a223c1c7
  2. 02 3月, 2016 1 次提交
    • F
      perf: Migrate perf to use new tick dependency mask model · 555e0c1e
      Frederic Weisbecker 提交于
      Instead of providing asynchronous checks for the nohz subsystem to verify
      perf event tick dependency, migrate perf to the new mask.
      
      Perf needs the tick for two situations:
      
      1) Freq events. We could set the tick dependency when those are
      installed on a CPU context. But setting a global dependency on top of
      the global freq events accounting is much easier. If people want that
      to be optimized, we can still refine that on the per-CPU tick dependency
      level. This patch dooesn't change the current behaviour anyway.
      
      2) Throttled events: this is a per-cpu dependency.
      Reviewed-by: NChris Metcalf <cmetcalf@ezchip.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Chris Metcalf <cmetcalf@ezchip.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Luiz Capitulino <lcapitulino@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Viresh Kumar <viresh.kumar@linaro.org>
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      555e0c1e
  3. 29 2月, 2016 1 次提交
    • T
      perf: Allow storage of PMU private data in event · 54d751d4
      Thomas Gleixner 提交于
      For PMUs which are not per CPU, but e.g. per package/socket, we want to be
      able to store a reference to the underlying per package/socket facility in the
      event at init time so we can avoid magic storage constructs in the PMU driver.
      
      This allows us to get rid of the per CPU dance in the intel uncore and RAPL
      drivers and avoids a lookup of the per package data in the perf hotpath.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andi Kleen <andi.kleen@intel.com>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Harish Chegondi <harish.chegondi@intel.com>
      Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kan Liang <kan.liang@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Vince Weaver <vincent.weaver@maine.edu>
      Cc: linux-kernel@vger.kernel.org
      Link: http://lkml.kernel.org/r/20160222221011.364140369@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      54d751d4
  4. 25 2月, 2016 2 次提交
    • P
      perf: Fix race between event install and jump_labels · 9107c89e
      Peter Zijlstra 提交于
      perf_install_in_context() relies upon the context switch hooks to have
      scheduled in events when the IPI misses its target -- after all, if
      the task has moved from the CPU (or wasn't running at all), it will
      have to context switch to run elsewhere.
      
      This however doesn't appear to be happening.
      
      It is possible for the IPI to not happen (task wasn't running) only to
      later observe the task running with an inactive context.
      
      The only possible explanation is that the context switch hooks are not
      called. Therefore put in a sync_sched() after toggling the jump_label
      to guarantee all CPUs will have them enabled before we install an
      event.
      
      A simple if (0->1) sync_sched() will not in fact work, because any
      further increment can race and complete before the sync_sched().
      Therefore we must jump through some hoops.
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: dvyukov@google.com
      Cc: eranian@google.com
      Cc: oleg@redhat.com
      Cc: panand@redhat.com
      Cc: sasha.levin@oracle.com
      Cc: vince@deater.net
      Link: http://lkml.kernel.org/r/20160224174947.980211985@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9107c89e
    • P
      perf: Fix cloning · a69b0ca4
      Peter Zijlstra 提交于
      Alexander reported that when the 'original' context gets destroyed, no
      new clones happen.
      
      This can happen irrespective of the ctx switch optimization, any task
      can die, even the parent, and we want to continue monitoring the task
      hierarchy until we either close the event or no tasks are left in the
      hierarchy.
      
      perf_event_init_context() will attempt to pin the 'parent' context
      during clone(). At that point current is the parent, and since current
      cannot have exited while executing clone(), its context cannot have
      passed through perf_event_exit_task_context(). Therefore
      perf_pin_task_context() cannot observe ctx->task == TASK_TOMBSTONE.
      
      However, since inherit_event() does:
      
      	if (parent_event->parent)
      		parent_event = parent_event->parent;
      
      it looks at the 'original' event when it does: is_orphaned_event().
      This can return true if the context that contains the this event has
      passed through perf_event_exit_task_context(). And thus we'll fail to
      clone the perf context.
      
      Fix this by adding a new state: STATE_DEAD, which is set by
      perf_release() to indicate that the filedesc (or kernel reference) is
      dead and there are no observers for our data left.
      
      Only for STATE_DEAD will is_orphaned_event() be true and inhibit
      cloning.
      
      STATE_EXIT is otherwise preserved such that is_event_hup() remains
      functional and will report when the observed task hierarchy becomes
      empty.
      Reported-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Tested-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: dvyukov@google.com
      Cc: eranian@google.com
      Cc: oleg@redhat.com
      Cc: panand@redhat.com
      Cc: sasha.levin@oracle.com
      Cc: vince@deater.net
      Fixes: c6e5b732 ("perf: Synchronously clean up child events")
      Link: http://lkml.kernel.org/r/20160224174947.919845295@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
      a69b0ca4
  5. 29 1月, 2016 2 次提交
  6. 22 1月, 2016 1 次提交
    • P
      perf: Collapse and fix event_function_call() users · fae3fde6
      Peter Zijlstra 提交于
      There is one common bug left in all the event_function_call() users,
      between loading ctx->task and getting to the remote_function(),
      ctx->task can already have been changed.
      
      Therefore we need to double check and retry if ctx->task != current.
      
      Insert another trampoline specific to event_function_call() that
      checks for this and further validates state. This also allows getting
      rid of the active/inactive functions.
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: David Ahern <dsahern@gmail.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Namhyung Kim <namhyung@kernel.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Vince Weaver <vincent.weaver@maine.edu>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      fae3fde6
  7. 23 11月, 2015 1 次提交
  8. 13 9月, 2015 4 次提交
  9. 10 8月, 2015 1 次提交
  10. 07 6月, 2015 2 次提交
    • K
      perf/x86/intel: Introduce PERF_RECORD_LOST_SAMPLES · f38b0dbb
      Kan Liang 提交于
      After enlarging the PEBS interrupt threshold, there may be some mixed up
      PEBS samples which are discarded by the kernel.
      
      This patch makes the kernel emit a PERF_RECORD_LOST_SAMPLES record with
      the number of possible discarded records when it is impossible to demux
      the samples.
      
      It makes sure the user is not left in the dark about such discards.
      Signed-off-by: NKan Liang <kan.liang@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: eranian@google.com
      Link: http://lkml.kernel.org/r/1431285195-14269-8-git-send-email-kan.liang@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      f38b0dbb
    • Y
      perf/x86/intel: Handle multiple records in the PEBS buffer · 21509084
      Yan, Zheng 提交于
      When the PEBS interrupt threshold is larger than one record and the
      machine supports multiple PEBS events, the records of these events are
      mixed up and we need to demultiplex them.
      
      Demuxing the records is hard because the hardware is deficient. The
      hardware has two issues that, when combined, create impossible
      scenarios to demux.
      
      The first issue is that the 'status' field of the PEBS record is a copy
      of the GLOBAL_STATUS MSR at PEBS assist time. To see why this is a
      problem let us first describe the regular PEBS cycle:
      
      A) the CTRn value reaches 0:
        - the corresponding bit in GLOBAL_STATUS gets set
        - we start arming the hardware assist
        < some unspecified amount of time later -- this could cover multiple
          events of interest >
      
      B) the hardware assist is armed, any next event will trigger it
      
      C) a matching event happens:
        - the hardware assist triggers and generates a PEBS record
          this includes a copy of GLOBAL_STATUS at this moment
        - if we auto-reload we (re)set CTRn
        - we clear the relevant bit in GLOBAL_STATUS
      
      Now consider the following chain of events:
      
        A0, B0, A1, C0
      
      The event generated for counter 0 will include a status with counter 1
      set, even though its not at all related to the record. A similar thing
      can happen with a !PEBS event if it just happens to overflow at the
      right moment.
      
      The second issue is that the hardware will only emit one record for two
      or more counters if the event that triggers the assist is 'close'. The
      'close' can be several cycles. In some cases even the complete assist,
      if the event is something that doesn't need retirement.
      
      For instance, consider this chain of events:
      
        A0, B0, A1, B1, C01
      
      Where C01 is an event that triggers both hardware assists, we will
      generate but a single record, but again with both counters listed in the
      status field.
      
      This time the record pertains to both events.
      
      Note that these two cases are different but undistinguishable with the
      data as generated. Therefore demuxing records with multiple PEBS bits
      (we can safely ignore status bits for !PEBS counters) is impossible.
      
      Furthermore we cannot emit the record to both events because that might
      cause a data leak -- the events might not have the same privileges -- so
      what this patch does is discard such events.
      
      The assumption/hope is that such discards will be rare.
      
      Here lists some possible ways you may get high discard rate.
      
        - when you count the same thing multiple times. But it is not a useful
          configuration.
        - you can be unfortunate if you measure with a userspace only PEBS
          event along with either a kernel or unrestricted PEBS event. Imagine
          the event triggering and setting the overflow flag right before
          entering the kernel. Then all kernel side events will end up with
          multiple bits set.
      Signed-off-by: NYan, Zheng <zheng.z.yan@intel.com>
      Signed-off-by: NKan Liang <kan.liang@intel.com>
      [ Changelog improvements. ]
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: eranian@google.com
      Link: http://lkml.kernel.org/r/1430940834-8964-4-git-send-email-kan.liang@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      21509084
  11. 27 5月, 2015 3 次提交
    • M
      perf: allow for PMU-specific event filtering · 66eb579e
      Mark Rutland 提交于
      In certain circumstances it may not be possible to schedule particular
      events due to constraints other than a lack of hardware counters (e.g.
      on big.LITTLE systems where CPUs support different events). The core
      perf event code does not distinguish these cases and pessimistically
      assumes that any failure to schedule an event means that it is not worth
      attempting to schedule later events, even if some hardware counters are
      still unused.
      
      When an event a pmu cannot schedule exists in a flexible group list it
      can unnecessarily prevent event groups following it in the list from
      being scheduled (until it is rotated to the end of the list). This means
      some events are scheduled for only a portion of the time they could be,
      and for short running programs no events may be scheduled if the list is
      initially sorted in an unfortunate order.
      
      This patch adds a new (optional) filter_match function pointer to struct
      pmu which a pmu driver can use to tell perf core when an event matches
      pmu-specific scheduling requirements. This plugs into the existing
      event_filter_match logic, and makes it possible to avoid the scheduling
      problem described above. When no filter is provided by the PMU, the
      existing behaviour is retained.
      
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Acked-by: NWill Deacon <will.deacon@arm.com>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      66eb579e
    • T
      perf/x86/intel/cqm: Use proper data types · b3df4ec4
      Thomas Gleixner 提交于
      'int' is really not a proper data type for an MSR. Use u32 to make it
      clear that we are dealing with a 32-bit unsigned hardware value.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Acked-by: NMatt Fleming <matt.fleming@intel.com>
      Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
      Cc: Will Auld <will.auld@intel.com>
      Link: http://lkml.kernel.org/r/20150518235149.919350144@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      b3df4ec4
    • P
      perf/x86: Fix event/group validation · b371b594
      Peter Zijlstra 提交于
      Commit 43b45780 ("perf/x86: Reduce stack usage of
      x86_schedule_events()") violated the rule that 'fake' scheduling; as
      used for event/group validation; should not change the event state.
      
      This went mostly un-noticed because repeated calls of
      x86_pmu::get_event_constraints() would give the same result. And
      x86_pmu::put_event_constraints() would mostly not do anything.
      
      Commit e979121b ("perf/x86/intel: Implement cross-HT corruption
      bug workaround") made the situation much worse by actually setting the
      event->hw.constraint value to NULL, so when validation and actual
      scheduling interact we get NULL ptr derefs.
      
      Fix it by removing the constraint pointer from the event and move it
      back to an array, this time in cpuc instead of on the stack.
      
      validate_group()
        x86_schedule_events()
          event->hw.constraint = c; # store
      
            <context switch>
              perf_task_event_sched_in()
                ...
                  x86_schedule_events();
                    event->hw.constraint = c2; # store
      
                    ...
      
                    put_event_constraints(event); # assume failure to schedule
                      intel_put_event_constraints()
                        event->hw.constraint = NULL;
      
            <context switch end>
      
          c = event->hw.constraint; # read -> NULL
      
          if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref
      
      This in particular is possible when the event in question is a
      cpu-wide event and group-leader, where the validate_group() tries to
      add an event to the group.
      Reported-by: NVince Weaver <vincent.weaver@maine.edu>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Hunter <ahh@google.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Fixes: 43b45780 ("perf/x86: Reduce stack usage of x86_schedule_events()")
      Fixes: e979121b ("perf/x86/intel: Implement cross-HT corruption bug workaround")
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      b371b594
  12. 18 5月, 2015 1 次提交
    • P
      sched,perf: Fix periodic timers · 4cfafd30
      Peter Zijlstra 提交于
      In the below two commits (see Fixes) we have periodic timers that can
      stop themselves when they're no longer required, but need to be
      (re)-started when their idle condition changes.
      
      Further complications is that we want the timer handler to always do
      the forward such that it will always correctly deal with the overruns,
      and we do not want to race such that the handler has already decided
      to stop, but the (external) restart sees the timer still active and we
      end up with a 'lost' timer.
      
      The problem with the current code is that the re-start can come before
      the callback does the forward, at which point the forward from the
      callback will WARN about forwarding an enqueued timer.
      
      Now, conceptually its easy to detect if you're before or after the fwd
      by comparing the expiration time against the current time. Of course,
      that's expensive (and racy) because we don't have the current time.
      
      Alternatively one could cache this state inside the timer, but then
      everybody pays the overhead of maintaining this extra state, and that
      is undesired.
      
      The only other option that I could see is the external timer_active
      variable, which I tried to kill before. I would love a nicer interface
      for this seemingly simple 'problem' but alas.
      
      Fixes: 272325c4 ("perf: Fix mux_interval hrtimer wreckage")
      Fixes: 77a4d1a1 ("sched: Cleanup bandwidth timers")
      Cc: pjt@google.com
      Cc: tglx@linutronix.de
      Cc: klamm@yandex-team.ru
      Cc: mingo@kernel.org
      Cc: bsegall@google.com
      Cc: hpa@zytor.com
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
      4cfafd30
  13. 14 5月, 2015 1 次提交
  14. 08 5月, 2015 1 次提交
    • P
      perf: Fix software migrate events · ff303e66
      Peter Zijlstra 提交于
      Stephane asked about PERF_COUNT_SW_CPU_MIGRATIONS and I realized it
      was borken:
      
       > The problem is that the task isn't actually scheduled while its being
       > migrated (obviously), and if its not scheduled, the counters aren't
       > scheduled either, so there's no observing of the fact.
       >
       > A further problem with migrations is that many migrations happen from
       > softirq context, which is nested inside the 'random' task context of
       > whoemever happens to run at that time, similarly for the wakeup
       > migrations triggered from (soft)irq context. All those end up being
       > accounted in the task that's currently running, eg. your 'ls'.
      
      The below cures this by marking a task as migrated and accounting it
      on the subsequent sched_in().
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      ff303e66
  15. 02 4月, 2015 6 次提交
    • A
      perf: Add ITRACE_START record to indicate that tracing has started · ec0d7729
      Alexander Shishkin 提交于
      For counters that generate AUX data that is bound to the context of a
      running task, such as instruction tracing, the decoder needs to know
      exactly which task is running when the event is first scheduled in,
      before the first sched_switch. The decoder's need to know this stems
      from the fact that instruction flow trace decoding will almost always
      require program's object code in order to reconstruct said flow and
      for that we need at least its pid/tid in the perf stream.
      
      To single out such instruction tracing pmus, this patch introduces
      ITRACE PMU capability. The reason this is not part of RECORD_AUX
      record is that not all pmus capable of generating AUX data need this,
      and the opposite is *probably* also true.
      
      While sched_switch covers for most cases, there are two problems with it:
      the consumer will need to process events out of order (that is, having
      found RECORD_AUX, it will have to skip forward to the nearest sched_switch
      to figure out which task it was, then go back to the actual trace to
      decode it) and it completely misses the case when the tracing is enabled
      and disabled before sched_switch, for example, via PERF_EVENT_IOC_DISABLE.
      Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1421237903-181015-15-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      ec0d7729
    • A
      perf: Add API for PMUs to write to the AUX area · fdc26706
      Alexander Shishkin 提交于
      For pmus that wish to write data to ring buffer's AUX area, provide
      perf_aux_output_{begin,end}() calls to initiate/commit data writes,
      similarly to perf_output_{begin,end}. These also use the same output
      handle structure. Also, similarly to software counterparts, these
      will direct inherited events' output to parents' ring buffers.
      
      After the perf_aux_output_begin() returns successfully, handle->size
      is set to the maximum amount of data that can be written wrt aux_tail
      pointer, so that no data that the user hasn't seen will be overwritten,
      therefore this should always be called before hardware writing is
      enabled. On success, this will return the pointer to pmu driver's
      private structure allocated for this aux area by pmu::setup_aux. Same
      pointer can also be retrieved using perf_get_aux() while hardware
      writing is enabled.
      
      PMU driver should pass the actual amount of data written as a parameter
      to perf_aux_output_end(). All hardware writes should be completed and
      visible before this one is called.
      
      Additionally, perf_aux_output_skip() will adjust output handle and
      aux_head in case some part of the buffer has to be skipped over to
      maintain hardware's alignment constraints.
      
      Nested writers are forbidden and guards are in place to catch such
      attempts.
      Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1421237903-181015-8-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      fdc26706
    • A
      perf: Add a pmu capability for "exclusive" events · bed5b25a
      Alexander Shishkin 提交于
      Usually, pmus that do, for example, instruction tracing, would only ever
      be able to have one event per task per cpu (or per perf_event_context). For
      such pmus it makes sense to disallow creating conflicting events early on,
      so as to provide consistent behavior for the user.
      
      This patch adds a pmu capability that indicates such constraint on event
      creation.
      Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1422613866-113186-1-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      bed5b25a
    • A
      perf: Add a capability for AUX_NO_SG pmus to do software double buffering · 6a279230
      Alexander Shishkin 提交于
      For pmus that don't support scatter-gather for AUX data in hardware, it
      might still make sense to implement software double buffering to avoid
      losing data while the user is reading data out. For this purpose, add
      a pmu capability that guarantees multiple high-order chunks for AUX buffer,
      so that the pmu driver can do switchover tricks.
      
      To make use of this feature, add PERF_PMU_CAP_AUX_SW_DOUBLEBUF to your
      pmu's capability mask. This will make the ring buffer AUX allocation code
      ensure that the biggest high order allocation for the aux buffer pages is
      no bigger than half of the total requested buffer size, thus making sure
      that the buffer has at least two high order allocations.
      Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1421237903-181015-5-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      6a279230
    • A
      perf: Support high-order allocations for AUX space · 0a4e38e6
      Alexander Shishkin 提交于
      Some pmus (such as BTS or Intel PT without multiple-entry ToPA capability)
      don't support scatter-gather and will prefer larger contiguous areas for
      their output regions.
      
      This patch adds a new pmu capability to request higher order allocations.
      Signed-off-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1421237903-181015-4-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      0a4e38e6
    • P
      perf: Add AUX area to ring buffer for raw data streams · 45bfb2e5
      Peter Zijlstra 提交于
      This patch introduces "AUX space" in the perf mmap buffer, intended for
      exporting high bandwidth data streams to userspace, such as instruction
      flow traces.
      
      AUX space is a ring buffer, defined by aux_{offset,size} fields in the
      user_page structure, and read/write pointers aux_{head,tail}, which abide
      by the same rules as data_* counterparts of the main perf buffer.
      
      In order to allocate/mmap AUX, userspace needs to set up aux_offset to
      such an offset that will be greater than data_offset+data_size and
      aux_size to be the desired buffer size. Both need to be page aligned.
      Then, same aux_offset and aux_size should be passed to mmap() call and
      if everything adds up, you should have an AUX buffer as a result.
      
      Pages that are mapped into this buffer also come out of user's mlock
      rlimit plus perf_event_mlock_kb allowance.
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Acked-by: NAlexander Shishkin <alexander.shishkin@linux.intel.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Frederic Weisbecker <fweisbec@gmail.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Kaixu Xia <kaixu.xia@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Robert Richter <rric@kernel.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: acme@infradead.org
      Cc: adrian.hunter@intel.com
      Cc: kan.liang@intel.com
      Cc: markus.t.metzger@intel.com
      Cc: mathieu.poirier@linaro.org
      Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      45bfb2e5
  16. 27 3月, 2015 1 次提交
    • P
      perf: Add per event clockid support · 34f43927
      Peter Zijlstra 提交于
      While thinking on the whole clock discussion it occurred to me we have
      two distinct uses of time:
      
       1) the tracking of event/ctx/cgroup enabled/running/stopped times
          which includes the self-monitoring support in struct
          perf_event_mmap_page.
      
       2) the actual timestamps visible in the data records.
      
      And we've been conflating them.
      
      The first is all about tracking time deltas, nobody should really care
      in what time base that happens, its all relative information, as long
      as its internally consistent it works.
      
      The second however is what people are worried about when having to
      merge their data with external sources. And here we have the
      discussion on MONOTONIC vs MONOTONIC_RAW etc..
      
      Where MONOTONIC is good for correlating between machines (static
      offset), MONOTNIC_RAW is required for correlating against a fixed rate
      hardware clock.
      
      This means configurability; now 1) makes that hard because it needs to
      be internally consistent across groups of unrelated events; which is
      why we had to have a global perf_clock().
      
      However, for 2) it doesn't really matter, perf itself doesn't care
      what it writes into the buffer.
      
      The below patch makes the distinction between these two cases by
      adding perf_event_clock() which is used for the second case. It
      further makes this configurable on a per-event basis, but adds a few
      sanity checks such that we cannot combine events with different clocks
      in confusing ways.
      
      And since we then have per-event configurability we might as well
      retain the 'legacy' behaviour as a default.
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: David Ahern <dsahern@gmail.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: John Stultz <john.stultz@linaro.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Stephane Eranian <eranian@google.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      34f43927
  17. 23 3月, 2015 1 次提交
  18. 25 2月, 2015 4 次提交
    • M
      perf/x86/intel: Support task events with Intel CQM · bfe1fcd2
      Matt Fleming 提交于
      Add support for task events as well as system-wide events. This change
      has a big impact on the way that we gather LLC occupancy values in
      intel_cqm_event_read().
      
      Currently, for system-wide (per-cpu) events we defer processing to
      userspace which knows how to discard all but one cpu result per package.
      
      Things aren't so simple for task events because we need to do the value
      aggregation ourselves. To do this, we defer updating the LLC occupancy
      value in event->count from intel_cqm_event_read() and do an SMP
      cross-call to read values for all packages in intel_cqm_event_count().
      We need to ensure that we only do this for one task event per cache
      group, otherwise we'll report duplicate values.
      
      If we're a system-wide event we want to fallback to the default
      perf_event_count() implementation. Refactor this into a common function
      so that we don't duplicate the code.
      
      Also, introduce PERF_TYPE_INTEL_CQM, since we need a way to track an
      event's task (if the event isn't per-cpu) inside of the Intel CQM PMU
      driver.  This task information is only availble in the upper layers of
      the perf infrastructure.
      
      Other perf backends stash the target task in event->hw.*target so we
      need to do something similar. The task is used to determine whether
      events should share a cache group and an RMID.
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
      Cc: linux-api@vger.kernel.org
      Link: http://lkml.kernel.org/r/1422038748-21397-8-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      bfe1fcd2
    • M
      perf/x86/intel: Add Intel Cache QoS Monitoring support · 4afbb24c
      Matt Fleming 提交于
      Future Intel Xeon processors support a Cache QoS Monitoring feature that
      allows tracking of the LLC occupancy for a task or task group, i.e. the
      amount of data in pulled into the LLC for the task (group).
      
      Currently the PMU only supports per-cpu events. We create an event for
      each cpu and read out all the LLC occupancy values.
      
      Because this results in duplicate values being written out to userspace,
      we also export a .per-pkg event file so that the perf tools only
      accumulate values for one cpu per package.
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
      Link: http://lkml.kernel.org/r/1422038748-21397-6-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      4afbb24c
    • M
      perf: Add ->count() function to read per-package counters · eacd3ecc
      Matt Fleming 提交于
      For PMU drivers that record per-package counters, the ->count variable
      cannot be used to record an accurate aggregated value, since it's not
      possible to perform SMP cross-calls to cpus on other packages from the
      context in which we update ->count.
      
      Introduce a new optional ->count() accessor function that can be used to
      customize how values are collected. If a PMU driver doesn't provide a
      ->count() function, we fallback to the existing code.
      
      There is necessarily a window of staleness with this approach because
      the task that generated the counter value may not have been scheduled by
      the cpu recently.
      
      An alternative and more complex approach would be to use a hrtimer to
      periodically refresh the values from a more permissive scheduling
      context. So, we're trading off complexity for accuracy.
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
      Link: http://lkml.kernel.org/r/1422038748-21397-3-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      eacd3ecc
    • M
      perf: Make perf_cgroup_from_task() global · 39bed6cb
      Matt Fleming 提交于
      Move perf_cgroup_from_task() from kernel/events/ to include/linux/ along
      with the necessary struct definitions, so that it can be used by the PMU
      code.
      
      When the upcoming Intel Cache Monitoring PMU driver assigns monitoring
      IDs to perf events, it needs to be able to check whether any two
      monitoring events overlap (say, a cgroup and task event), which means we
      need to be able to lookup the cgroup associated with a task (if any).
      Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
      Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Jiri Olsa <jolsa@redhat.com>
      Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
      Link: http://lkml.kernel.org/r/1422038748-21397-2-git-send-email-matt@codeblueprint.co.ukSigned-off-by: NIngo Molnar <mingo@kernel.org>
      39bed6cb
  19. 19 2月, 2015 5 次提交